• Title/Summary/Keyword: Thickness Distribution

Search Result 2,295, Processing Time 0.034 seconds

Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating (증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구)

  • 정재인;정우철;손영호;이득진;박성렬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 2000
  • Al films on cold-rolled steel sheet have been prepared by vacuum evaporation and arc-induced ion plating, respectively, and the evaporation rate and vapor distribution (thickness distribution over the substrate) have been investigated according to deposition conditions. The arc-induced ion plating (AIIP) method have been employed, which makes use of arc-like discharge current induced by ionization electrode located near the evaporation source. The AIIP takes advantage of high ionization rate compared with conventional ion plating, and can be carried out at low pressure of less than $10^{-4}$ torr. Very high evaporation rate of more than 2.0 mu\textrm{m}$/min could be achieved for Al evaporation using alumina liner by electron beam evaporation. The geometry factor n for the $cos^{n/\phi}$ vapor distribution, which affects the thickness distribution of films at the substrate turned out to be around 1 for vacuum evaporation, while it features around 2 or higher for ion plating. For the ion plated films, it has been found that the ionization condition and substrate bias are the main parameters to affect the thickness distribution of the films.

  • PDF

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Development of Numerical Model for Predicting Deposition Thickness Distribution during Spray Process for Carbon Nanotube Thin Films (탄소나노튜브 박막 제조를 위한 분무공정에서의 증착 두께 분포 예측 모델 개발)

  • Choi, Du-Soon;Kim, Duck-Jong;Jang, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.969-974
    • /
    • 2011
  • A carbon nanotube (CNT) is a cylindrical carbon nanostructure with good transport properties along the tube's axis. As an approach for realizing the practical use of CNTs, CNT networks are fabricated and their applications in many fields are investigated. To fabricate thin CNT-based films, several methods have been proposed and used. Among these methods, the spray coating method is a robust method for fabricating a large area. However, it is difficult to achieve uniformity in the CNT network. To solve this problem, it is necessary to understand the effect of the sprayprocess parameters on the deposition thickness distribution. In this study, a numerical model for predicting the deposition thickness distribution during the spray process was developed. The spatial deposition thickness distributions obtained according to various nozzle paths were analyzed using the developed numerical model.

Analysis of Subthreshold Current Deviation for Gate Oxide Thickness of Double Gate MOSFET (게이트 산화막 두께에 따른 이중게이트 MOSFET의 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee;Jeong, Dongsoo;Lee, Jong-In;Kwon, Oshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.762-765
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for gate oxide thickness of double gate(DG) MOSFET. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The potential distribution was obtained as the analytical function of channel dimension, using the boundary condition. The subthreshold current had been analyzed for gate oxide thickness, and projected range and standard projected deviation of Gaussian function. Since this analytical potential model was verified in the previous papers, we used this model to analyze the subthreshold current. Resultly, we know the subthreshold current was influenced on parameters of Gaussian function and gate oxide thickness for DGMOSFET.

  • PDF

Estimation of Aerosol Optical Thickness over East Asia Using GMS-5 Visible Channel Measurements (GMS-5 위성의 가시자료를 이용한 동아시아 지역의 에어로솔 광학두께 추정)

  • Urm, Young-Dae;Sohn, Byung-Ju
    • Atmosphere
    • /
    • v.15 no.4
    • /
    • pp.203-211
    • /
    • 2005
  • One algorithm has been developed for retrieving aerosol optical thickness from GMS-5 visible channel measurements, and then the algorithm was applied for obtaining the geographical distribution of aerosol optical thickness over East Asia during April 2002. Algorithm employs a look-up table based upon radiative transfer calculations with solar geometry, aerosol optical thickness, and surface albedo as inputs. Validation was conducted by comparing retrieved aerosol optical thickness with measured values from ground-based sky radiation measurements at Anmyon Do, Korea. It was found that the correlation coefficient is 0.71 with -0.03 of bias and 0.34 of root mean square error, suggesting that the algorithm developed in this study can be used for estimating aerosol optical thickness in a quantitative sense.

A Study on the Optimized Copper Electrochemical Plating in Dual Damascene Process

  • Yoo, Hae-Young;Chang, Eui-Goo;Kim, Nam-Hoon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.225-228
    • /
    • 2005
  • In this work, we studied the optimized copper thickness in Cu ECP (Electrochemical Plating). In order to select an optimized Cu ECP thickness, we examined Cu ECP bulge (bump, hump or over-plating amount), Cu CMP dishing and electrical properties of via hole and line trench over dual damascene patterned wafers split into different ECP Cu thickness. In the aspect of bump and dishing, the bulge increased according as target plating thickness decreased. Dishing of edge was larger than center of wafer. Also in case of electrical property, metal line resistance distribution became broad gradually according as Cu ECP thickness decreased. In conclusion, at least $20\%$ reduced Cu ECP thickness from current baseline; $0.8\;{\mu}m$ and $1.0\;{\mu}m$ are suitable to be adopted as newly optimized Cu ECP thickness for local and intermediate layer.

Thermal buckling analysis of functionally graded sandwich cylindrical shells

  • Daikh, Ahmed Amine
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.335-351
    • /
    • 2020
  • Thermal buckling of functionally graded sandwich cylindrical shells is presented in this study. Material properties and thermal expansion coefficient of FGM layers are assumed to vary continuously through the thickness according to a sigmoid function and simple power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FGM sandwich cylindrical shells with simply supported boundary conditions are derived according to the Donnell theory. The influences of cylindrical shell geometry and the gradient index on the critical buckling temperature of several kinds of FGM sandwich cylindrical shells are investigated. The thermal loads are assumed to be uniform, linear and nonlinear distribution across the thickness direction. An exact simple form of nonlinear temperature rise through its thickness taking into account the thermal conductivity and the inhomogeneity parameter is presented.

A Study on the Warm Beep Drawabilities of Galvannealed Steel Sheet (합금화 용융 아연 도금강판의 온간 디프드로잉 성형성에 관한 연구)

  • Chang S. H.;Choi C. S.;Choi Y. C.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.168-173
    • /
    • 2000
  • The limiting drawing ratio (LDR) under uniform heating of blanks was measured at the various temperature ranges between 25 and $250^{\circ}C$ by using two different blank shapes, square and circular blanks, and six different blank sizes with the drawing ratios(DR) of 2.4 to 2.9. The galvannealed steel sheet (SCP3CM 60/60) of 0.7mm thickness was used. The LDR at warm forming condition reached 1.2 times of that at room temperature, and the maximum drawing depth reached 1.9 times. The higher temperature was adopted, the more stable and uniform thickness strain distribution was observed.

  • PDF

Analysis of functionally graded plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2017
  • This paper uses the four-variable refined plate theory for the free vibration analysis of functionally graded material (FGM) rectangular plates. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from the Hamilton's principle. The closed-form solutions of functionally graded plates are obtained using Navier solution. Numerical results of the refined plate theory are presented to show the effect of the material distribution, the aspect and side-to-thickness ratio on the fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of functionally graded plates.

A Study on the Warm Deep Drawabilities of Galvannealed Steel Sheet (합금화 용융 아연 도금강판의 온간 딥드로잉 성형성에 관한 연구)

  • 장성호;서대교
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.423-429
    • /
    • 2002
  • The limiting drawing ratio (LDR) under uniform heating of blanks was measured at the various temperature ranges between 25 and 25$0^{\circ}C$ by using two different blank shapes, square and circular blanks, and six different blank sizes with the drawing ratios(DR) of 2.4 to 2.9. The galvannealed steel sheet (SCP3CM 60/60) of 0.7mm thickness were used. The LDR at warm forming condition reached 1.2 times of that at room temperature, and the maximum drawing depth reached 1.9 times. The higher temperature was adopted, the more stable and uniform thickness strain distribution was observed. Some cases of the experimental results were compared with the analitical results using the commercial finite element method (FEM) code.