Browse > Article
http://dx.doi.org/10.12989/aas.2020.7.4.335

Thermal buckling analysis of functionally graded sandwich cylindrical shells  

Daikh, Ahmed Amine (Structural Engineering and Mechanics of Materials Laboratory, Department of Civil Engineering)
Publication Information
Advances in aircraft and spacecraft science / v.7, no.4, 2020 , pp. 335-351 More about this Journal
Abstract
Thermal buckling of functionally graded sandwich cylindrical shells is presented in this study. Material properties and thermal expansion coefficient of FGM layers are assumed to vary continuously through the thickness according to a sigmoid function and simple power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FGM sandwich cylindrical shells with simply supported boundary conditions are derived according to the Donnell theory. The influences of cylindrical shell geometry and the gradient index on the critical buckling temperature of several kinds of FGM sandwich cylindrical shells are investigated. The thermal loads are assumed to be uniform, linear and nonlinear distribution across the thickness direction. An exact simple form of nonlinear temperature rise through its thickness taking into account the thermal conductivity and the inhomogeneity parameter is presented.
Keywords
FGM sandwich cylindrical shells; thermal buckling; nonlinear temperature rise; Donnell theory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Asadi, H., Akbarzadeh, A.H., Chen, Z.T. and Aghdam, M.M. (2015), "Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys", Smart Mater. Struct., 24(4), 045022. http://doi.org/10.1088/0964-1726/24/4/045022.   DOI
2 Bagherizadeh, E., Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling of functionally graded material cylindrical shells on elastic foundation", AIAA J., 50(2), 500-503. https://doi.org/10.2514/1.J051120.   DOI
3 Brush D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York, U.S.A.
4 Daikh, A.A. and Zenkour, A.M. (2019a), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Express, 6, 065703. https://doi.org/10.1088/2053-1591/ab0971.   DOI
5 Daikh, A.A. and Zenkour, A.M. (2019b), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6, 115707. https://doi.org/10.1088/2053-1591/ab48a9.   DOI
6 Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205.   DOI
7 Shahsiah, R. and Eslami, M.R. (2003a), "Functionally graded cylindrical shell thermal instability based on improved Donnell equations", AIAA J., 41(9), 1819-1826. https://doi.org/10.2514/2.7301.   DOI
8 Ni, Y., Tong, Z., Rong, D., Zhou, Z. and Xu, X. (2018), "Accurate thermal buckling analysis of functionally graded orthotropic cylindrical shells under the symplectic framework", Thin-Walled Struct., 129, 1-9. https://doi.org/10.1016/j.tws.2018.03.030.   DOI
9 Ni, Y.W., Tong, Z.Z., Rong, D.L., Zhou, Z.H. and Xu, X.S. (2017), "A new Hamiltonian-based approach for free vibration of a functionally graded orthotropic circular cylindrical shell embedded in an elastic medium", Thin-Walled Struct., 120, 236-248. http://doi.org/10.1016/j.tws.2017.09.003.   DOI
10 Sabzikar Boroujerdy, M., Naj, R. and Kiani, Y. (2014), "Buckling of heated temperature dependent FGM cylindrical shell surrounded by elastic medium", J. Theor. Appl. Mech., 52(4), 869-881. https://doi.org/10.15632/jtam-pl.52.4.869.   DOI
11 Zhang, Y., Huang, H. and Han, Q. (2015), "Buckling of elastoplastic functionally graded cylindrical shells under combined compression and pressure", Compos. Part B, 69, 120-126. http://doi.org/10.1016/j.compositesb.2014.09.024.   DOI
12 Wan, Z. and Li, S. (2017), "Thermal buckling analysis of functionally graded cylindrical shells", Appl. Math. Mech., 38(8), 1059-1070. https://doi.org/10.1007/s10483-017-2225-7.   DOI
13 Wu, L., Jiang, Z. and Liu, J. (2005), "Thermoelastic stability of functionally graded cylindrical shells", Compos. Struct., 70, 60-68. https://doi.org/10.1016/j.compstruct.2004.08.012.   DOI
14 Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012.   DOI
15 Sheng, G.G. and Wang, X. (2008), "Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium", J. Reinf. Plast. Compos., 27(2), 117-134. https://doi.org/10.1177/0731684407082627.   DOI
16 Shahsiah, R. and Eslami, M.R. (2003b) "Thermal buckling of functionally graded cylindrical shells", J. Therm. Stresses, 26, 277-294. https://doi.org/10.1080/713855892.   DOI
17 Shariyat, M. and Asgari, D. (2013), "Nonlinear thermal buckling and postbuckling analyses of imperfect variable thickness temperature-dependent bidirectional functionally graded cylindrical shells", Int. J. Pressure Vessels Piping, 112, 310-320. http://doi.org/10.1016/j.ijpvp.2013.09.005.   DOI
18 Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., 60(4), 615-631. http://doi.org/10.12989/sem.2016.60.4.615.   DOI
19 Zhou, Z.H., Ni, Y.W., Tong, Z.Z., Zhu, S.B., Sun, J.B. and Xu, X.S. (2019b), "Accurate nonlinear stability analysis of functionally graded multilayer hybrid composite cylindrical shells subjected to combined loads", Mater. Des., 182, 108035. https://doi.org/10.1016/j.matdes.2019.108035.   DOI
20 Zhou, Z.H., Ni, Y.W., Tong, Z.Z., Zhu, S.B., Sun, J.B. and Xu, X.S. (2019a), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.   DOI
21 Mirzavand, B. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded cylindrical shells based on the Wan-Donnell model", J. Therm. Stresses, 29(1), 37-55. https://doi.org/10.1080/01495730500257409.   DOI
22 Lang, Z. and Xuewu, L. (2013), "Buckling and vibration analysis of functionally graded magneto-electrothermo- elastic circular cylindrical shells", Appl. Math. Model., 37, 2279-2292. http://doi.org/10.1016/j.apm.2012.05.023.   DOI
23 Lang, Z. and Xuewu, L. (2013), "Buckling and vibration analysis of functionally graded magneto-electrothermo- elastic circular cylindrical shells", Appl. Math. Model., 37(4), 2279-2292. https://doi.org/10.1016/j.apm.2012.05.023.   DOI
24 Mehralian, F., Beni, Y.T. and Ansari, R. (2016), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024.   DOI
25 Mirzavand, B. and Eslami, M.R. (2007), "Thermal buckling of simply supported piezoelectric FGM cylindrical shells", J. Therm. Stresses, 30(11), 1117-1135. https://doi.org/10.1080/01495730701416036.   DOI
26 Mirzavand, B., Eslami, M.R. and Shahsiah, R. (2005), "Effect of imperfections on thermal buckling of functionally graded cylindrical shells", AIAA J., 43(9), 2073-2076. https://doi.org/10.2514/1.12900.   DOI
27 Han, Q., Wang, Z., Nash, D.H. and Liu, P. (2017), "Thermal buckling analysis of cylindrical shell with functionally graded material coating", Compos. Struct., 181, 171-182. http://doi.org/10.1016/j.compstruct.2017.08.085.   DOI
28 Daikh, A.A., Guerroudj, M., Elajrami M. and Megueni, A. (2020), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.
29 Dung, D.V. and Nga, N.T. (2013), "Nonlinear buckling and postbuckling of eccentrically stiffened functionally graded cylindrical shells surrounded by and elastic medium based on the first order shear deformation theory", Vietnam J. Mech., 35, 285-298. https://doi.org/10.15625/0866-7136/35/4/3116.   DOI
30 Finot, M., Suresh, S., Bull, C. and Sampath., S. (1996), "Curvature changes during thermal cycling of a compositionally graded Ni/$A1_2O_3$ multi-layered material", Mater. Sci. Eng. A, 205, 59-71. https://doi.org/10.1016/0921-5093(95)09892-5.   DOI
31 Hoang, V.T. and Nguyen., D.D. (2008), "Thermal buckling of imperfect functionally graded cylindrical shells According to Wan-Donnell model", Vietnam J. Mech., 30(3), 185-194. https://doi.org/10.15625/0866-7136/30/3/5618.
32 Huang, H., Han, Q. and Wei, D. (2011), "Buckling of FGM cylindrical shells subjected to pure bending load", Compos. Struct., 93, 2945-2952. https://doi.org/10.1016/j.compstruct.2011.05.009.   DOI
33 Kadoli, R. and Ganesan, N. (2006), "Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition", J. Sound Vib., 289, 450-480. https://doi.org/10.1016/j.jsv.2005.02.034.   DOI
34 Sun, J., Lim, C.W., Zhou, Z., Xu, X. and Sun, W. (2016), "Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells", J. Appl. Phys., 119, 214303. https://doi.org/10.1063/1.4952984.   DOI
35 Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic, Boston, U.S.A.
36 Najafizadeh, M.M, Hasani, A. and Khazaeinejad, P. (2009), "Mechanical stability of functionally graded stiffened cylindrical shells", Appl. Math. Model., 33, 1151-1157. https://doi.org/10.1016/j.apm.2008.01.009.   DOI
37 Nasirmanesh, A. and Mohammadi, S. (2016), "Eigenvalue buckling analysis of cracked functionally graded cylindrical shells in the framework of the extended finite element method", Compos. Struct., 159, 548-566. https://doi.org/10.1016/j.compstruct.2016.09.065.   DOI
38 Sheng, G.G. and Wang, X. (2008), "Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium", J. Reinf. Plast. Compos., 27(2), 117-134. https://doi.org/10.1177/0731684407082627.   DOI
39 Sheng, G.G. and Wang, X. (2010), "Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells", Appl. Math. Model., 34, 2630-2643. https://doi.org/10.1016/j.apm.2009.11.024.   DOI
40 Sofiyev A.H. (2014), "The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure", Compos. Struct., 117, 124-134. http://doi.org/10.1016/j.compstruct.2014.06.025.   DOI
41 Thang, P.T., Duc, N.D. and Nguyen-Thoi, T. (2016), "Effects of variable thickness and imperfection on nonlinear buckling of sigmoidfunctionally graded cylindrical panels", Compos. Struct., 155, 99-106. http://doi.org/10.1016/j.compstruct.2016.08.007.   DOI
42 Thang, P.T., Duc, N.D. and Nguyen-Thoi, T. (2017), "Thermomechanical buckling and post-buckling of cylindrical shell with functionally graded coatings and reinforced by stringers", Aerosp. Sci. Technol., 66, 392-401. http://doi.org/10.1016/j.ast.2017.03.023   DOI
43 Thangaratnam, R.K., Palaninathan, R. and Ramachandran, J. (1990), "Thermal buckling of laminated composite shells", AIAA J., 28(5), 859-860. http://doi.org/10.2414/3.25130.   DOI
44 Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.   DOI