• Title/Summary/Keyword: Thickness Coefficient

Search Result 1,285, Processing Time 0.033 seconds

The strongest control of thermophoresis coefficient on nanoparticle profile at intermediate gaps: A spinning sphere

  • Sharif, Humaira;Naeem, Muhammad Nawaz;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.201-207
    • /
    • 2022
  • The evaluation of velocity profile for large values of buoyancy parameter and Bioconvected Rayleigh number is examined. The non-linear problem has been tackled numerically by shooting technique. Nanofluid temperature and nanoparticle concentration slightly elevates for increasing values of thermophoresis coefficient. Thickness of thermal boundary layer is significantly increased with thermophoresis coefficient whereas thickness of concentration boundary layer is more slightly enhanced. The response of temperature and nanoparticles concentration is observed due to change in Brownian motion parameter. As Brownian motion parameter increased temperature distribution is slightly enhanced. The reverse behavior is observed in case of nanoparticles concentration. Comparison of numerical technique with the extant literature is made and an acceptable agreement is attained.

Acoustical Properties of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 음향특성)

  • Lee, Seung;Park, Sang-Jun;Lee, Dong-Hoon;Phae, Chae-Gun;Kim, Min-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1341-1346
    • /
    • 2001
  • In this study, the acoustic properties of steel-wire sound absorbing materials with different thickness and bulk density were investigated in terms of characteristic impedance, propagation constant, and absorption coefficient. The well-known two-cavity method was used for evaluating those acoustic parameter values in experiments. Also, in order to validate the experimentally measured values, the results were compared with the results obtained from Chung and Blaser's transfer function method and SWR method. The experimentally measured values of normal absorption coefficients were generally agreed well with the corresponding values from the transfer function method and the SWR method. Based on the experimental results, the following conclusions could be made. The magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the sound absorbing materials. Also, the magnitude of the absorption coefficient depended on the characteristic impedance and the propagation constant. As large as the air cavity depth at the rear side of the steel-wire sound absorbing materials, the maximum magnitude of the absorption coefficient occurred at the lower frequency ranges.

  • PDF

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films (구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향)

  • Hwang, Seulgi;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

Regression Analysis on Physical Status of Korean Middle and High School Boys (중.고등학생(中.高等學生)의 체격(體格)에 관(關)한 회귀분석(回歸分析))

  • Song, Dal-Hyo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.2
    • /
    • pp.299-304
    • /
    • 1974
  • The physical status (standing height, body weight, chest girth, sitting height, length of leg, length of thigh, thigh girth, length of crus, length of arm, brachial length, antebrachial girth and skinfold thickness) of 360 healthy middle and high school boys aged between 12 and 17 years in Taegu area was measured and evaluated by means of dispersion. For regression equation and coefficient ofidetermination of each status against standing height were computed. The growth progress of physical status had a tendency to be exponential and, generally, between 13 and 14 years of age the fastest progress was observed. The regression coefficient of body weight against standing height (0.90) was largest and that of skinfold thickness against standing height (0.09) was smallest. In general, the dimension of the regression coefficient was accordant with the dimension of respective physical status. Except in length of thigh and skinfold thickness, coefficient of determination of each physical status against standing height was almost 1 and the regression line could express the relation between standing height and each physical status very satisfactorily. But the regression curve was more desirable for the elucidation of the relation between standing height and skinfold thickness.

  • PDF

Total Body Fat Estimation by Means of Densitometry and Skinfold Thickness in Middle-Aged Men (밀도법 및 피부두겹법에 의한 중년 남자의 총지방량 측정)

  • Nam, Kwang-Hyun;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 1974
  • Formulas for the prediction of total body fat from skinfold thickness in middle aged men were presented. Hydrostatic weighing was made on 35 middle-aged men $(age:\;40{\sim}50\;years)$ sad corrected for residual volume in lung. Skinfold thickness at four sites, namely, arm, back, waist and abdomen were compared with total fat calculated from the formula given by Keys and Brozek and regression equations were derived. In middle-aged men the observed values were: Body density, 1.07478 ; total body fat, 10.51% body weight; lean body mass, 89.49% body weight; arm skinfold thickness, 4.85mm; back, 10.4 ; waist, 7.72; abdomen, 7.62 and mean skinfold thickness of the four sites, 7.59 mm. The correlations between skinfold thickness and body density were high. The correlations between skinfold thickness and total body fat were also high. The coefficient of correlation between total body fat and arm skinfold, mean skinfold thickness were r=0.839 and r=0.862, respectively. Arm and mean skinfold thicknesses (x, mm) could be used as the representative value for the prediction of total body fat (y, % body weight). The regression equations were: On arm y=2.00x+0.99, With mean skinfold y=1.20x+1.41 The coefficient of correlation between body weight (kg) and mean skinfold thickness was r=0.733. The ratio of mean skinfold thickness (mm) to body weight (kg) in middle-aged men was 0.132.

  • PDF

The Flow Analysis of Supercavitating Cascade by Nonlinear Theory (비선형이론에 의한 Supercavitation 익렬의 유동해석)

  • Pak, Ee-Tong;Hwang, Yoon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • In this study comparison of experiment results with the computed results of linear theory and nonlinear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade using nonlinear theory, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. The results compared linear theory and nonlinear theory with the experiment results of the study are as follows: The tolerances of nonlinear theory were larger than those of linear theory in case of ${\alpha}<10^{\circ}$. Moreover the computational range of attack angles could be expanded from ${\alpha}=10^{\circ}$ to ${\alpha}=25^{\circ}$, the flow field of supercavitating cascade could be analyzed in the condition which the wake thickness and the length of cavity are a variable. The shapes of cavity were changed sensitively according to various variable such as attack angles, pitches and wake thickness, and the pressure distribution of hydrofoil surface was identical almost disregarding wake thickness but changed largely according to attack angle and the length of cavity. Lift coefficient and drag coefficient were reduced according to increasing of wake thickness but the influences of wake thickness were very little in the situation of small pitch and long cavity.

  • PDF

Thermal creep effects of aluminum alloy cladding on the irradiation-induced mechanical behavior in U-10Mo/Al monolithic fuel plates

  • Jian, Xiaobin;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.802-810
    • /
    • 2020
  • Three-dimensional finite element simulations are implemented for the in-pile thermo-mechanical behavior in U-Mo/Al monolithic fuel plates with different thermal creep rates of cladding involved. The numerical results indicate that the thickness increment of fuel foil rises with the thermal creep coefficient of cladding. The maximum Mises stress of cladding is reduced by ~85% from 344 MPa on the 98.0th day when the creep coefficient of cladding increases from 0.01 to 10.0, due to its equivalent thermal creep strain enlarged by 3.5 times. When the thermal creep coefficient of Aluminum cladding increases from 0 to 1.0, the maximum mesoscale stress of fuel foil varies slightly. At the same time, the peak mesoscale normal stress of fuel foil can reach 51 MPa on the 98.0th day for the thermal creep coefficient of 10, which increases by 60.3% of that with the thermal creep un-occurred in the cladding. The maximum through-thickness creep strain components of fuel foil differ slightly for different thermal creep coefficients of cladding. The dangerous region of fuel foil becomes much closer to the heavily irradiated side when the creep coefficient of cladding becomes 10.0. The creep performance of Aluminum cladding should be optimized for the integrity of monolithic fuel plates.

Thickness and Annealing Effects on the Thermoelectric Properties of P-type Bi0.5Sb1.5Te3 Thin Films (P형 Bi0.5Sb1.5Te3 박막의 열전 특성에 미치는 두께 및 어닐링 효과)

  • Kim Il-Ho;Jang Kyug-Wook
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • P-type $Bi_{0.5}$$Sb_{1.5}$ $Te_3$ thin films were deposited by the flash evaporation technique, and their thermoelectric properties and electronic transport parameters were investigated. The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties. Annealing effects on the carrier concentration and mobility were also studied, and their variations were analyzed in conjunction with the antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the effective mean free path was found to be 3150$\AA$. No phase transformation and composition change were observed after annealing treatment, but carrier mobility increased due to grain growth. Carrier concentration decreased considerably due to reduction of the antisite defects, so that electrical conductivity decreased and Seebeck coefficient increased. When annealed at 473 K for 1 hr, Seebeck coefficient and electrical conductivity were $160\mu$V/K and 610 $W^{-1}$ $cm^{ -1}$, respectively. Therefore, the thermoelectric quality factor were also enhanced to be $16\mu$W/cm $K^2$.>.

The Effect of the Gurney Flap on NACA 00XX Airfoil (NACA 00XX 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.59-65
    • /
    • 2002
  • The objective of this study is to provide the quantitative and qualitative computational data about the aerodynamic performance of Gurney flap on NACA 00XX airfoils and to show the optimum Gurney flap height for each airfoil. The test was performed on 7 different airfoils from NACA 0006 to NACA0024, which have a 3% chord(=c) thickness interval. For every NACA 00XX airfoil, Gurney flap heights were changed by 0.5% or 0.25% chord interval from 0 to 2.0%c to study their effects. The aerodynamic characteristics of clean and Gurney flap airfoil were compared, and the influences of Gurney flap on each airfoil were compared. As a CFD (Computational Fluid Dynamics) solver, FLUENT, based on Navier-Stokes code, was used to calculate the flow field around the airfoil. The fully-turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. The test results showed that Gurney flap increased the lift coefficient much more than the drag coefficient over a certain range of the lift coefficient, so the lift-to-drag ratio, which is the important index of airfoil performance, was increased. Based on the test results, the relationship between the airfoil thickness and the optimum Gurney flap heights was suggested.

  • PDF

Effects of surface characteristics of electrolytic tinplate on frictional properties during ironing operaration of 2-piece can-making process (전기주석도금강판의 표면특성이 투피스캔 제관공정의 아이어닝 가공시 마찰특성에 미치는 영향)

  • 김태엽
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.191-201
    • /
    • 1997
  • Non-passivated electrolytic tinplates withour conventinal chemical treatment self-oxidize in ambient atmosphere to from yellow stain on the outermost surface during the long-term storage. The degree of yellowness of the stain increased linerly with the oxide thickness due to the interfeefence color of the $SnO_2$ Even though the thickness of the oxide layer was very thin, less than 100$\AA$ , it exerts an undesirable influence on the can-making processes, particularly the stripping behavior after ironing. Investigations were carried out on the morphologies of the coating layer, the changes in oxide thickness during successive can-making processes and the averge friction coefficients with the different oxide thinkness. These oxide layers were broken up and distributed within the bulk tin coating during the ironing process. This redistribution of the oxide layer prvented smooth pressing-aside of the tin coating layer, resulting in an increase in the ironing friction coefficient. As the friction was increased, the residual stress along the can wall thinkness(i.e., the hoop stress) was also increased. Due to both the oxibe layer accumulation, which increased the friction coefficient, and the hoop stress, can stripping efficiency without roll-back is reduced.

  • PDF