• 제목/요약/키워드: Thickness Attenuation

검색결과 183건 처리시간 0.023초

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

방사선 방어시설 구축 시 활용 가능한 관전압별 납 시트 차폐율 성능평가 및 실측 검증 (Evaluation and Verification of the Attenuation Rate of Lead Sheets by Tube Voltage for Reference to Radiation Shielding Facilities)

  • 이기윤;정경환;한동희;김장오;한만석;길종원;백철하
    • 한국방사선학회논문지
    • /
    • 제17권4호
    • /
    • pp.489-495
    • /
    • 2023
  • 방사선 방어시설은 진단용 방사선 발생장치가 설치되어 있는 장소에 구축되어 환자, 방사선 작업 종사자 등의 피폭을 방지한다. 본 연구에서는 이러한 방사선 방어시설의 주 재료인 납에 대해 최대관전압별 차폐 두께의 경향성을 몬테칼로 시뮬레이션과 실측을 통해 비교 검증하고자 한다. 몬테칼로 시뮬레이션 코드 중 Monte Carlo N-Particle 6를 활용하였으며 해당 시뮬레이션 상에 모사한 납 차폐 구조도는 선원과 납 시트 사이의 거리는 100 cm, 조사야 크기는 10 × 10 cm2이며 관전압은 80, 100, 120, 140 kVp로 설정하였다. 각 관전압별 에너지 스펙트럼을 산출하여 시뮬레이션에 적용하였다. 80, 100, 120, 140 kVp별 각각 50, 70, 90, 95% 차폐율을 보이는 납 두께를 산출하였다. 80 kVp에서 각 차폐율에 해당하는 두께는 각각 0.03, 0.08, 0.2 1, 0.33 mm이며, 100 kVp에서는 0.05, 0.12, 0.30, 0.50 mm, 120 kVp에서는 0.06, 0.14, 0.38, 0.56 mm, 140 kV p에서는 0.08, 0.16, 0.42, 0.61 mm로 나타났다. 산출된 납 두께에 대해 실측을 진행하였으며 사용된 방사선 발생장치는 GE Healthcare 사의 Discovery XR 656이며 선량계측기의 경우 IBA 사의 MagicMax이다. 실측결과 80 kVp에서 각 두께별 차폐율은 43.56, 70.33, 89.85, 93.05%였으며 100 kVp에서는 52.49, 72.26, 86.31, 92.17%, 120 kVp에서는 48.26, 71.18, 87.30, 91.56%, 140 kVp에서는 50.45, 68.75, 89.95, 91.65%.로 나타났다. 시뮬레이션과 실측을 비교한 결과 두 값의 차이가 평균 약 3% 이내로 작은 것으로 확인되었다. 본 연구의 결과는 몬테칼로 시뮬레이션의 신뢰성을 검증함과 동시에 향후 방사선 방어시설의 구축에 있어 기초 데이터로 활용될 수 있을 것으로 사료된다.

도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구 (THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY)

  • 김승수;조성식;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

9.45GHz용 전파흡수체의 설계 방법 (Design Method for the Electromagnetic Wave Absorber at 9.45 GHz)

  • 김왕섭;김경용
    • 한국전자파학회지:전자파기술
    • /
    • 제4권2호
    • /
    • pp.11-16
    • /
    • 1993
  • A design method for the electromagnetic wave absorber with the attenuation over 20 dB at a frequency was formulated. In addition to the matching boundary which is determined by the theoretical equation, several limiting conditions due to the fabrication process were examined. Based on the study on the effects of the variance of the thickness and permittivity on the electromagnetic wave absorbing characteristics, a mean to exclude such effects was also included in the proposed design method. The ranges of variables were limited as the frequency of 9.45 GHz and .epsilon.' = 5 ~ 30, when the effect of .epsilon. " was not considered.

  • PDF

구립자층내의 복사에너지 감쇠량계측의 불확정성에 관한 연구 (Uncertainty in the Measurement of Radiative Energy Attenuation through Packed Spheres)

  • 김춘식;김경근;김용모
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제15권5호
    • /
    • pp.23-29
    • /
    • 1991
  • Uncertainty is studied in the measurements of average packing density, thickness of packed spheres and transmittance in the experiments to study the effect of the bed height and the existence of the bed side walls on the transmittance of radiative energy through packed spheres. The packing density of the bed is obtained by counting the number of the spheres packed in three pipes with different heights. The bed height of the packed spheres is estimated from the number of spheres contained in the bed by using the relation between the bed height and the sphere number. The transmittance is obtained by dividing the intensity of the transmitted laser beam by the incoming-beam intensity. From the analysis, the uncertainity in the measurements of transmittance is shown to be less than 10.2%(95% coverage).

  • PDF

초음파에 의한 알루미늄 소결체 설계를 위한 탄성계수 예측 (Elastic Modulus Prediction for Design of Sintered Aluminum by Ultrasonic)

  • 남영현
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.590-596
    • /
    • 2008
  • The ultrasonic velocities of sintered aluminum with varying density were measured in order to deduce the mechanical properties for optimum design of the sintered aluminum. Specimens with different densities were prepared by the plasma activated sintering machine. The density distribution of sintered aluminum becomes partially inhomogeneous because of the friction between the powder and the die during compaction. The elastic moduli are increased as the ultrasonic velocity is increased. Furthermore, Poisoon's ratio is depending on not only the density but also the size and distribution of voids. As the specimen's thickness increases, the center frequency in the frequency spectrum of the reflection wave is shifted to the low frequency. The attenuation coefficient of ultrasonic wave is decreased inversely as the density increased.

이중에너지 방법을 이용한 X선 영상법에 관한 연구 (A Study on the X-Ray Imaging using Dusl Energy Method)

  • 신동익;김종효
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권2호
    • /
    • pp.185-194
    • /
    • 1988
  • The dual-energy technique win used to separate the bone-only and tissue-only images from the conventional chest images. The equivalent thickness of the basic materials are estimated from low and high energy images of a given complex materials using the attenuation coefficient of ma serial componens. We showed that the image quality of dual-energy imaging method can be influenced by the ponlinearity and noise components of system and spectrum distributions The quantitative analysis of Calcium component was performed by dual-energy technique and it is shown that the concentration of the Calcium could be accurately estimated within 5% error range.

  • PDF

The Perfectly Matched Layer applied to the Split-Step Pade PE Solver in an Ocean Waveguide

  • Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권3E호
    • /
    • pp.131-136
    • /
    • 2006
  • The PML developed for the radio wave propagation is a powerful numerical domain truncation technique. We perform an analytic study on the reflection from the PML inserted in the ocean bottom. In the ocean bottom, we show the PML to have the improved performance but simultaneously the degeneration below the critical angle of the fast ocean bottom. The degeneration of the PML can be simply relaxed by stretching the thickness of the PML or putting the attenuation coefficient to the ocean bottom. As a better solution, we propose the improved truncation technique based on the PML and the non-local boundary condition. Finally, we apply the PML to the acoustic wave propagation using split-step Pade PE solver. For the problems of the ocean waveguide, the numerical efficiency of the PML is examined and the usefulness of the PML is confirmed.

반대파 스펙트럼의 극소점 해석을 통한 다층매질에서의 음속 측정법 (The Measurement of Ultrasonic Velocity in Multilayered Medium by Dip Points Analysis from Reflected Echo Spectrum)

  • 김시환;최종수
    • 대한전자공학회논문지
    • /
    • 제22권4호
    • /
    • pp.16-23
    • /
    • 1985
  • 초음파 반사신호로 부터 매질의 특성을 끌어내고저 할 경우, 반사되어 오는 신호내에 포함되어 있는 여러 불요성분 때문에 그 정량성 평가에 어려움이 존재한다. 이에, 본 논문은 초음파 반사파에 주파수 스펙트럼의 우기적인 특성인 극소점 해석 기법을 통용하여 다층매질에서의 음달분포 정량화의 가능성을 논하고 있다. 이를 위해 컴퓨터 시뮬레이션을 행하고, 이때 고려되어야 할 간섭현상, 임피던스 차리, 감리, 두께등의 영향에 관한 검토, 그 유용성을 확인해주고 있다. 아울러 간단한 실험을 통해 그 가능성을 입양해 주고 있다.

  • PDF