• Title/Summary/Keyword: Thick film NTC thermistor

Search Result 4, Processing Time 0.015 seconds

Effect of lead-free frit and RuO2 on the electrical properties of thick film NTC thermistors for low temperature co-firing (저온 동시 소성용 후막 NTC 서미스터의 전기적 특성에 미치는 무연계 프릿트 및 RuO2의 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.218-227
    • /
    • 2021
  • A thick film NTC thermistor for low temperature co-firing was manufactured by printing and sintering a paste prepared using NTC powder of Mn1.5Ni0.4Co0.9Cu0.4O4 composition, lead free frit, and RuO2 on a 96 % alumina substrate. The effect of frit and RuO2 on the electrical properties of thick film NTC thermistor was studied. The resistance of the thick film NTC thermistor was higher than that of the bulk phase sintered at the same temperature, but it was found that the negative resistance temperature characteristic appeared more clearly and linearly in the resistance - temperature characteristic. On the other hand, the area resistance decreased as the sintering temperature increased, and the area resistance increased as the amount of frit added increased. The B constant of the thick film NTC thermistor was 3000 K or higher. Among them, it was found that the B constant of the thick film NTC thermistor made of paste with 5 wt% of frit added and sintered at 900℃ showed the highest B constant. Also, it can be seen that the area resistance decreased with the addition of RuO2, and the change in the area resistance decrease of the thick film NTC thermistor obtained by sintering the paste containing 5 wt% of RuO2 at 900℃ is the most obvious.

Fabrication and Characterization of NiMn2O4 NTC Thermistor Thick Films by Aerosol Deposition (상온 진공 분말 분사법에 의한 NiMn2O4계 NTC Thermistor 후막제작 및 특성평가)

  • Baek, Chang-Woo;Han, Gui-fang;Hahn, Byung-Dong;Yoon, Woon-Ha;Choi, Jong-Jin;Park, Dong-Soo;Ryu, Jung-ho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.277-282
    • /
    • 2011
  • Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such as sensors and temperature compensation devices. NTC thermistor thick films of $Ni_{1+x}Mn_{2-x}O_{4+{\delta}}$ (x = 0.05, 0, -0.05) were fabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T) characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between $25^{\circ}C$ and $85^{\circ}C$ without heat treatment. When the film was annealed at $600^{\circ}C$ 1h, the resistivity of the film gradually decreased due to crystallization and grain growth. The resistivity and the activation energy of films annealed at $600^{\circ}C$ for 1 h were 5.203, 5.95, and 4.772 $K{\Omega}{\cdot}cm$ and 351, 326, and 299 meV for $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$, $NiMn_2O_4$, and $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$, respectively. The annealing process induced insulating $Mn_2O_3$ in the Ni deficient $Ni_{0.95}Mn_{2.05}O_{4+{\delta}}$ composition resulting in large resistivity and activation energy. Meanwhile, excess Ni in $Ni_{1.05}Mn_{1.95}O_{4+{\delta}}$ suppressed the abnormal grain growth and changed $Mn^{3+}$ to $Mn^{4+}$, giving lower resistivity and activation energy.

Fabrication and Characterization of Hybrid NTC Thermistor Films with Conducting Oxide Particles by an Aerosol-Deposition Process (상온 분사 공정에 의한 산화물전도 입자 복합 하이브리드 NTC 서미스터 필름의 제작 및 특성)

  • Kang, Ju-Eun;Ryu, Jungho;Choi, Jong-Jin;Yoon, Woon-Ha;Kim, Jong-Woo;Ahn, Cheol-Woo;Choi, Joon Hwan;Park, Dong-Soo;Kim, Yang-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • Negative-temperature coefficient (NTC) thermistors based on nickel manganite spinel ($NiMn_2O_4$) are widely used for many applications, such as sensors and temperature compensators, due to their good thermistor characteristics and stabilities. However, to achieve thermistors with a high NTC B constant, which is an important figure of merit pertaining to the degree of temperature sensitivity, the activation energy should be high such that high resistivity at ambient temperatures results. To obtain a high B constant and low resistivity, Al and Si modified spinel structured $Ni_{0.6}Si_{0.2}Al_{0.6}Mn_{1.6}O_4$ hybrid thick films with the conducting metal oxide of $LaNiO_3$ were fabricated on a glass substrate by aerosol deposition at room temperature (RT). The NTC-$LaNiO_3$ hybrid thick films showed resistivity as low as < $100k{\Omega}\;cm$ at $90^{\circ}C$, which is one or two orders of magnitude lower than that of the monolithic NTC films, while retaining a high B constant of $NiMn_2O_4$ of over 5500 K when 20 wt% $LaNiO_3$ was added without a post-thermal treatment. These phenomena are explained by the percolation threshold mechanism.

Fabrication and Characterization of Multi-layered Thick Films by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사 공정을 이용한 다층 박막 소재의 제조 및 전기적 특성)

  • Ryu, Jung-Ho;Ahn, Cheol-Woo;Kim, Jong-Woo;Choi, Jong-Jin;Yoon, Woon-Ha;Hahn, Byung-Dong;Choi, Joon-Hwan;Park, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.584-592
    • /
    • 2012
  • Room temperature powder spray in vacuum process, so called Aerosol deposition (AD) is a room temperature (RT) process to fabricate thick and dense ceramic films, based on collision of solid ceramic particles. This technique can provide crack-free dense thin and thick films with thicknesses ranging from sub micrometer to several hundred micrometers with very fast deposition rates at RT. In addition, this technique is using solid particles to form the ceramic films at RT, thus there is few limitation of the substrate and easy to control the compositions of the films. In this article, we review the progress made in synthesis of piezoelectric thin/thick films, multi-layer structures, NTC thermistor thin/thick films, oxide electrode thin films for actuators or sensor applications by AD at Korea Institute of Materials Science (KIMS) during the last 4 years.