• 제목/요약/키워드: Thick Shell

Search Result 136, Processing Time 0.022 seconds

Three-Dimensional Vibration Analysis of Thick Shells of Revolution (두꺼운 축대칭 회전쉘의 3차원적 진동해석)

  • 강재훈;양근혁;장경호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.399-407
    • /
    • 2002
  • A three-dimensional method of analysis is presented for determining the free vibration frequencies and mode shapes of hollow bodies of revolution (i.e., thick shells), not limited to straight line generators or constant thickness. The middle surface of the shell may have arbitrary curvatures, and the wall thickness may vary arbitrarily. Displacement components$U_\Phi, U_z, U_\theta$ in the meridional, normal and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in$\theta$, and algebraic polynomials in the$\Phi$and z directions. Potential(strain) and kinetic energies of the entire body are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degrees of the polynomials are increased, frequencies converge to the exact values. Novel numerical results are presented for two types of thick conical shells and thick spherical shell segments having linear thickness variations. Convergence to four digit exactitude is demonstrated for the first five frequencies of both types of shells. The method is applicable to thin shells, as well as thick and very thick ones.

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.

Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.733-762
    • /
    • 2016
  • Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke's law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.

A semi-analytical and numerical approach for solving 3D nonlinear cylindrical shell systems

  • Liming Dai;Kamran Foroutan
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.461-473
    • /
    • 2023
  • This study aims to solve for nonlinear cylindrical shell systems with a semi-analytical and numerical approach implementing the P-T method. The procedures and conditions for such a study are presented in practically solving and analyzing the cylindrical shell systems. An analytical model for a nonlinear thick cylindrical shell (TCS) is established on the basis of the stress function and Reddy's higher-order shear deformation theory (HSDT). According to Reddy's HSDT, Hooke's law in three dimensions, and the von-Kármán equation, the stress-strain relations are developed for the thick cylindrical shell systems, and the three coupled nonlinear governing equations are thus established and discretized as per the Galerkin method, for implementing the P-T method. The solution generated with the approach is continuous everywhere in the entire time domain considered. The approach proposed can also be used to numerically solve and analyze the nonlinear shell systems. The procedures and recurrence relations for numerical solutions of shell systems are presented. To demonstrate the application of the approach in numerically solving for nonlinear cylindrical shell systems, a specific nonlinear cylindrical shell system subjected to an external excitation is solved numerically. In numerically solving for the system, the present approach shows higher efficiency, accuracy, and reliability in comparison with that of the Runge-Kutta method. The approach with the P-T method presented is practically sound especially when continuous and high-quality numerical solutions for the shell systems are considered.

Harmonic Axisymmetric Thick Shell Element for Static and Vibration Analyses

  • Kim, Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1747-1754
    • /
    • 2004
  • In this study, a new harmonic axisymmetric thick shell element for static and dynamic analyses is proposed. The newly proposed element considering shear strain is based on a modified Hellinger-Reissner variational principle, and introduces additional nodeless degrees for displacement field interpolation in order to enhance numerical performance. The stress parameters selected via the field-consistency concept. are very important in formulating a trouble-free hybrid-mixed elements. For computational efficiency, the stress parameters are eliminated by the stationary condition and then the nodeless degrees are condensed out by the dynamic reduction. Several numerical examples confirm that the present element shows improved efficiency and yields very accurate results for static and vibration analyses.

Vibration Analysis of Thick Hyperboloidal Shells of Revolution from a Three-Dimensional Analysis (두꺼운 축대칭 쌍곡형 쉘의 3차원 진동해석)

  • 심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.419-429
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of thick, hyperboloidal shells of revolution. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components u/sub r/, u/sub θ/, u/sub z/ in the radial, circumferential, and axial directions, respectively, we taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the r and z directions. Potential(strain) and kinetic energies of the hyperboloidal shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four digit exactitude is demonstrated for the first five frequencies of the hyperboloidal shells of revolution. Numerical results are tabulated for eighteen configurations of completely free hyperboloidal shells of revolution having two different shell thickness ratios, three variant axis ratios, and three types of shell height ratios. Poisson's ratio (ν) is fixed at 0.3. Comparisons we made among the frequencies for these hyperboloidal shells and ones which ate cylindrical or nearly cylindrical( small meridional curvature. ) The method is applicable to thin hyperboloidal shells, as well as thick and very thick ones.

A Study on the Analysis of Anisotropic Thin and Thick Shells (비등방성 얇은 쉘 및 두꺼운 쉘의 해석연구)

  • Park Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.525-530
    • /
    • 2005
  • In this study, it is presented analysis results of bending problems in the anisotropic thick shell and the anisotropic thin shell bending problems. In the numerical analysis of various mechanical problems involving complex partial differential equations, finite element method is used. Both Kirchoffs assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic shells. The analysis results are compared between the anisotropic thick shells and the anisotropic thin shells for the various width-thickness ratios. The numerical method of this study will be contributed not only to analysis the bending behavior of anisotropic shells but also to design the anisotropic shells.

  • PDF

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

A Performance Study of First-order Shear Deformable shell Element Based on Loop Subdivision Surface (루프서브디비전 곡면을 이용한 일차전단 변형 쉘요소의 성능에 관한 연구)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.261-268
    • /
    • 2003
  • A first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell is developed. The developed element is general since it includes the effect of transverse shear deformation and has standard six degrees of freedom per node.(three translations and three rotations) The quartic box-spline function is employed as interpolation basis function. Numerical examples for the benchmark problems are analyzed in order to assess the performance of the newly developed subdivision shell element. Both in the uniform and in the distorted mesh configurations.

  • PDF

First-Order Shear Deformable Subdivision Shell Element Consistent with Loop-Subdivision Surface (루프 서브디비전 곡면의 1차 전단 변형 쉘 요소)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.55-61
    • /
    • 2002
  • In the present study, a first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell and composite laminated or sandwich shells are developed. The developed element is more general than the previous one based on classical shell theory, since it includes the effect of transverse shell deformation and has standard five degrees of freedom per node. The quartic box spline function is employed as the interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

  • PDF