• 제목/요약/키워드: Thermotropic Liquid Crystalline Polymers

검색결과 39건 처리시간 0.023초

Rheological properties of some thermotropic liquid crystalline polymers

  • Fan, Yurun;Dai, Shaocong;Tanner, Roger I.
    • Korea-Australia Rheology Journal
    • /
    • 제15권3호
    • /
    • pp.109-115
    • /
    • 2003
  • Rheometry testing and the DSC measurement of five thermotropic liquid crystalline polymers (TLCP) have been carried out. The dynamic viscosities of the five TLCPs show a typical shear-thinning behaviour obeying the power-law with the power indices from 0.2 to 0.3. When these TLCPs are heated above the melting temperatures determined by the DSC measurements, the dynamic viscosities first rapidly decrease by 2~3 orders of magnitude then level off, finally increase gradually with the further increasing of temperature. The steady shearing exhibited the same behaviour as the dynamic shearing, but serious edge fracture of material slippage out of the plates occurred. The abnormal temperature dependence of the viscosities can be explained by the nematic-isotropic transition. By using the concept of activation energy, we propose a simple model which can fit the shear-thinning behaviour quite well and predict qualitatively correct temperature effects.

서모트로픽 액정폴리머와 폴리아미드6으로 성형된 얇은 복합재료의 미세구조형태 (Microstructural Morphology of Molded Thin Composites of Thermotropic Liquid Crystalline Polymer and Polyamide 6)

  • 최낙삼;최기영;하성규
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1703-1711
    • /
    • 2000
  • Microstructural morphology of molded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) has been studied as a function of epoxy fraction. Injection-moulding of a thin composite plaque at a temperature below the melting point of the LCP fibrils by suing the extruded LCP/PA6 pellets produced multi-layered structures: 1) the surface skin layer with thickness of 65-120 ym exhibiting a transverse orientation, 2) the sub-skin layer with an orientation perpendicular to the surface skin, i.e. in the flow direction, 3) the core layer with arc-curved flow patterns. Similar microstructural orientations were observed in the respective layers for the composite plaques with different fractions of epoxy.

Studies on the Ternary Blends of Liquid Crystalline Polymer and Polyesters

  • Kim, Seong-Hun;Kang, Seong-Wook
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.83-91
    • /
    • 2000
  • Thermotropic liquid crystalline polymer made up of poly(p-hydroxybenzoate) (PHB)-poly(ethylene terephthalate)(PET) 8/2 copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to pursue the liquid crystalline phase of ternary blends. Complex viscosities of blends decreased with increasing temperature and PHB content. DSC thermal analysis indicated that glass transition temperature (Tg) and melting temperature (Tm) of blends increased with increasing PHB content. Both tensile strength and initial modulus increased with raising PHB content and take-up speed of monofilaments. In the WAXS diagram, only PEN crystal reflection at 2Θ=$15.5^{\circ}C$ appeared but PET crystal reflection was not shown in all compositions. The degree of transesterification and randomness of blends increased with blending time but sequential length of both PEN and PET segment decreased.

  • PDF

Thermal Decomposition Behavior and Durability Evaluation of Thermotropic Liquid Crystalline Polymers

  • Shin, Sang-Mi;Kim, Seong-Hun;Song, Jun-Kwang
    • Macromolecular Research
    • /
    • 제17권3호
    • /
    • pp.149-155
    • /
    • 2009
  • The thermal decomposition behavior and degradation characteristics off our different thermotropic liquid crystalline polymers (TLCPs) were studied. The thermal decomposition behavior was determined by means of thermogravimetric analysis (TGA) at different heating rates in nitrogen and air. The order of the thermal stability was as follows: multi-aromatic polyester > hydroxybenzoic acid (HBA)/hydroxynaphthoic acid (HNA) copolyester > HNA/hydroxyl acetaniline (HAA)/terephthalic acid (TA) copolyester > HBA/Poly(ethylene terephthalate) (PET) copolyester. The activation energies of the thermal degradation were calculated by four multiple heating rate methods: Flynn-Wall, Friedman, Kissinger, and Kim-Park. The Flynn-Wall and Kim-Park methods were the most suitable methods to calculate the activation energy. Samples were exposed to an accelerated degradation test (ADT), under fixed conditions of heat ($63{\pm}3^{\circ}C$), humidity ($30{\pm}4%$) and Xenon arc radiation ($1.10\;W/m^2$), and the changes in surface morphology and color difference with time were determined. The TLCPs decomposed, discolored and cracked upon exposure to ultraviolet radiation.

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Chain Ordering Effects in the Nematic-Isotropic Phase Transition of Polymer Melts

  • Han Soo Kim;Hyungsuk Pak;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권2호
    • /
    • pp.199-206
    • /
    • 1991
  • A statistical thermodynamic theory of thermotropic main-chain polymeric liquid crystalline melts is developed within the framework of the lattice model by a generalization of the well-known procedure of Flory and DiMarzio. According to the results of Vasilenko et al., the theory of orientational ordering in melts of polymers containing rigid and flexible segments in the main chain is taken into account. When the ordering of flexible segments in the nematic melt is correlated with that of rigid mesogenic groups, the former is assumed to be given as a function of the ordering of rigid mesogenic cores. A free energy density that includes short-range packing contributions is formulated. The properties of the liquid-crystalline transiton are investigated for various cases of the system. The results calculated in this paper show not only the order-parameter values but also the first-order phase transition phenomena that are similar to those observed experimentally for the thermotropic liquid-crystalline polymers and show the transitional entropy terms which actually increase upon orientational ordering. In the orientational ordering values, it is shown that mesogenic groups, flexible segments, and gauche energy (temperature) may be quite substantial. Finally, by using the flexibility term, we predict the highly anisotropic mesophase which was shown by Vasilenko et al.

Spacer를 가지고 방향족 polyurethane의 분자간 상호 작용에 의한 액정성의 발견 (Analysis of Intermolecular Interaction in Thermotropic Aromatic Polyurethanes with Flexible Spacers)

  • Lee, Jong Back;Song, Jin Cherl
    • 한국염색가공학회지
    • /
    • 제7권4호
    • /
    • pp.8-15
    • /
    • 1995
  • A series of thermotropic Polyurethanes mesogenic unit were synthesized by polyaddition of a para-type diisocyanate such as 2,5-tolylene diisocyanate(2,5-TDI) with 4-4'-bis($\omega$-hydroxyalkoxy) biphenls(BPm: $HOCmH_{2m}OC_{6}H_{4}OC_{m}H_{2m}OH$ : m is the carbon number of the hydroxyalkoxy group) in DMF. Intrinsic viscosities of the polymers were in the range of 0.41~0.99dL/g DSC thermograms for these polymers exhibited two endothermic peaks corresponding to phase transitions of melting and isotropization. For examplem polyurethane 2,5-TDI/BPll with [η]=0.99 prepared from 2.5-TDI and 4,4'-bis[11-hydroxyundecaoxy biphenyl(BP11) a liquid crystalline phase from 156 to 173$^{\circ}C$. The thermotropic properites of liquid crystalline polyurethanes have been investigated by wide-angle X-ray scatter(WAXS), infrared (IR) spectroscopy, and differential scanning calorimetry (DSC). The mesomorphic behavior of the polyurethanes was concluded to be greatly dependent on the intermolecular hydrogen bonds through the urethane.

  • PDF

Spacer 의 변화에 의한 Thermotropic Polyamide 및 Copolyamide 의 합성 (Synthesis of Thermotropic Liquid-Crystalline Polyamides and Copolyamides Containing a Different Spacer in the Main Chain and Their Structure Interpretation)

  • 송진철;김경환
    • 한국염색가공학회지
    • /
    • 제5권2호
    • /
    • pp.109-116
    • /
    • 1993
  • Synthesis and liquid-crystallinites of thermotropic polyamides and copolyamides were investigated. Thermotropic polyamides and copolyamides containing a flexible spacer in the backbone were obtained by the two or three components melt polycondensations of 4,4'-dicarboxy-${\alpha}$${\omega}$-diphenoxy alkane as an A components, 4,4'-diacetoamido-3,3' dimethoxybiphenyl as a B, 1,4-diacetoamido-benzene (diacetylated p-phenylenediamine) was used as another amide-group-forming minomer. The content of the amide groups in the thermotropic polyamide and Copolyamide widely varied depending on the structure of the amide-group forming diacetoamido monomers. A polymer (9CLDI) showed a typical nematic texture between 218$^{circle}C$ ($T_m$) and 345$^{circle}C$($T_i$) The melting points of the members of this series of polymers increased with decreasing methylene spacer. The polymer structure and mesmorphic nature were examined by solid and solution ${^13}C$-NMR spectroscopy, cross polarizing microscopy with a hot stage.

  • PDF