• Title/Summary/Keyword: Thermosetting

Search Result 147, Processing Time 0.022 seconds

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

Rapid Tooling (2) : Al Powder Filled Resin Tooling and Its Characteristics (급속금형제작 (2) : 알루미늄 분말 혼합수지를 이용한 간이형 제작과 그 특성)

  • 김범수;임용관;배원병;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.39-45
    • /
    • 1998
  • In the previous study. the powder casting was attempted as the rapid tooling. The powder casting was the process to cast dry powder into the casting mold transferred from R/P model and infiltrate the liquid binder to solidify the powder. And then, the melted copper was infiltrated to control the shrinkage rate of the final mold Conseqently, the shrinkage rate was under 0.1% through that process. The mechanical characteristic was also excellent. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical property of the phenol was not good enough to apply to molds directly. In this study, aluminium powder filled with epoxy is applicated to the slurry casting to solve these problems. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. We achieved a successful result that the shrinkage rate is shortened about 0.047%. Futhermore, the manufacturing time and cost savings are significant. Finally, we assume that the developing possibility of this process is very optimistic.

  • PDF

Effects of Ar+ ion Beam Irradiation on the Adhesion Forces between Carbon fibers and Thermosetting Resins (Ar+ 이온 빔 조사가 탄소섬유와 열경화성 수지 간 계면결합력에 미치는 영향)

  • 박수진;서민강;김학용;이경엽
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.718-727
    • /
    • 2002
  • In this work, an Ar+ beam was irradiated on carbon fiber surfaces to improve the interfacial shear strength (IFSS) of the resulting composites using an ion assisted reaction (IAR) method h single fiber pull-out test was executed to investigate the basic characteristics of the single Carbon fiber/matrix interface. Based on Greszczuk's geometrical model, the debonding force for pull-out of the fiber from the resins was discussed with the applied ion beam energy as a result, it was known that an ion beam treatment produced the functional groups on fiber surface and etching lines along the fiber axis direction, resulting in increasing the adhesion forces between fibers and matrix, which caused the improvement of the IFSS in a composite system. And, it was also found that the maximum IFSS was shown at 0.8 keV ion beam energy in this system.

Cure Kinetics of DGEBA/MDA/SN/HQ Thermosetting Matrix (열경화성 DGEBA/MDA/SN/HQ 매트릭스의 경화반응 속도)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.667-672
    • /
    • 1995
  • Cure kinetics of DGEBA(diglycidyl ether of bisphenol A)/MDA(4, 4'-methylene dianiline)/SN(succinonitrile) system and DGEBA/MDA/SN/HQ(hydroquinone) system was studied by Kissinger equation and Fractional life method through DSC in the temperature range of 85∼150$^{\circ}C$. As cure temperature was increased, reaction rate increased and reaction order was almost constant. The reaction rate of the system with HQ as a catalyst was more higher and activation energy of that was lower about 20% than those of the system without HQ. Starting temperature of cure reaction for DGEBA/MDA/SN/HQ system decreased about 30$^{\circ}C$ than that of DGEBA/MDA/SN system.

  • PDF

Fracture behavior of DGEBA/MDA/SN System (DGEBA/MDA/SN 계의 파괴 거동)

  • Jo, Seong-U;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.140-144
    • /
    • 1993
  • Abstract To modify brittleness among the properties of thermosetting epoxy resin, a reactive additive. succinonitrile(SN) was introduced to Diglycidyl ether of bisphenol A(DGEBA)-4, 4'-methylene dianiline (MDA) system. Fracture behavior was microscopically studied during breaking of composite materials. As a result, post debond friction energy was the most significant for breaking the composite having glass fibres, pull-out energy was the next significant and debonding energy was the last. It was observed that shear stress between glass fibre and epoxy matrix was main factor for fracture behavior. Reactive additive, SN made shear stress deteriorated.

  • PDF

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances (친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.

Study on Properties of Carbon Sheet Molding Compound(C-SMC) according to Resin and Carbon Fiber Ratio (수지 및 탄소섬유 함유량에 따른 C-SMC 복합재료 물성 연구)

  • Seo, Dae-kyung;Yang, Suk-gon;Kim, Ki Young;Park, Min Gee;Park, Dae-gyu;Lee, Eun-ha;Kim, Yong-tae;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.245-254
    • /
    • 2020
  • The sheet molding compound composite has been applied divers section. This paper reports processing of carbon fiber reinforced thermosetting composite with diverse resins and which was composed of chopped carbon fiber (30 ~ 60 wt%). Normally the paste that the viscosity is over 15,000 cps has been used in traditional Sheet molding compound (SMC) machine. In this research, SMC machine was designed to make Carbon-sheet molding compound (C-SMC) prepreg which was composed with low viscosity resin (1,800 ~ 2,500 cps increase up to 10,000 cps after aging). In order to confirm the optimal processing condition. Mechanical strength tests including tensile test, shear test, impact test, flexural strength test were conducted on C-SMC composites. Plus we identified the correlation between the mechanical properties and prepreg processing condition (carbon ratio and applied resin).

Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator (양이온 개시제를 이용한 열경화성 액정 에폭시의 열분해 활성화에너지)

  • Jung, Ye Ji;Hyun, Ha Nuel;Cho, Seung Hyun
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.180-185
    • /
    • 2021
  • Due to the formation of random three dimensional network structure, which cause a lot of scattering of phonons, the thermal conductivity is low when the liquid crystalline epoxy is cured with amine-based curing agent. This problem is solved by using a cationic initiator that can make mesogen groups to be stacked structure. In this experiment, the thermal stability is compared by investigating the activation energy of isothermal decomposition through TGA of an epoxy using an amine-based curing agent and a cationic initiator. As a result, the energy of the activation of the epoxy using a cationic initiator is high. Compared with the previous experiments, the thermal stability is similar to the thermal conductivity.