Effects of Ar+ ion Beam Irradiation on the Adhesion Forces between Carbon fibers and Thermosetting Resins

Ar+ 이온 빔 조사가 탄소섬유와 열경화성 수지 간 계면결합력에 미치는 영향

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 김학용 (전북대학교 섬유공학과) ;
  • 이경엽 (경희대학교 기계ㆍ산업시스템공학부)
  • Published : 2002.11.01

Abstract

In this work, an Ar+ beam was irradiated on carbon fiber surfaces to improve the interfacial shear strength (IFSS) of the resulting composites using an ion assisted reaction (IAR) method h single fiber pull-out test was executed to investigate the basic characteristics of the single Carbon fiber/matrix interface. Based on Greszczuk's geometrical model, the debonding force for pull-out of the fiber from the resins was discussed with the applied ion beam energy as a result, it was known that an ion beam treatment produced the functional groups on fiber surface and etching lines along the fiber axis direction, resulting in increasing the adhesion forces between fibers and matrix, which caused the improvement of the IFSS in a composite system. And, it was also found that the maximum IFSS was shown at 0.8 keV ion beam energy in this system.

본 연구에서는 최종 복합재료의 기계적 계면특성을 향상시키기 위하여 산소 분위기 하에서 반응성 기체를 사용하는 이온 보조 반응법에 의해 탄소섬유 표면에 Ar+ 이온 빔을 조사하였다. 그리고, 단일 섬유 pull-out 시험을 실시하여 가해진 이온 에너지 세기에 대한 수지 내의 섬유의 뽑힘 정도를 측정한 후 Greszczuk의 .기하학적 모델에 기초하여 섬유/매트릭스 간의 계면특성을 알아보고자 하였다. 그 결과, 탄소섬유를 이온 빔으로 처리함에 따라 섬유와 매트릭스 간의 부착력 증가의 원인이 되는 섬유축 방향으로의 표면 etching 및 반응성 그룹이 형성되어 계면 전단강도가 향상되었으며 0.8 keV 이온 빔 세기에서 최대값을 나타내었다.

Keywords

References

  1. Cem. Concr. Res. v.29 S. Wen;D. D. L. Chung https://doi.org/10.1016/S0008-8846(98)00211-7
  2. Carbon Fibers(2ed.) J. B. Donnet;R. C. Bansal
  3. Adsorption, Surface Area and Porosity(2ed.) S. J. Gregg;K. S. Sing
  4. Interfacial Forces and Fields: Theory and Applications S. J. Park;J. P. Hsu(ed.)
  5. J. Comp. Mater. v.26 N. Melanitis;C. Galiotis;P.L. Tetlow;C. K. L. Davies https://doi.org/10.1177/002199839202600407
  6. Comp. Sci. Technol. v.58 K. E. Atkinson;C. Kiley https://doi.org/10.1016/S0266-3538(98)00012-8
  7. J. Mater. Sci. v.35 S. J. Park;M. H. Kim https://doi.org/10.1023/A:1004754100310
  8. Thin Solid Films v.148 W. Weisweiler;E. Fitzer;G. Nagel;H. Jager https://doi.org/10.1016/0040-6090(87)90124-6
  9. Composites Part A v.27 K. E. Atkinson;G. J. Farrow;C. Jones https://doi.org/10.1016/1359-835X(96)00030-9
  10. Polym. Compo. v.12 H. Li;A. Moshonov;J. D. Muzzy https://doi.org/10.1002/pc.750120309
  11. Carbon v.37 S. J. Park;B. J. Park;S. K. Ryu https://doi.org/10.1016/S0008-6223(98)00318-2
  12. Ceram. Bull. v.54 R. V. Crane;V. J. Krukonis
  13. J. Appl. Polym. Sci. v.62 J. O. Iroh;G. A. Wood https://doi.org/10.1002/(SICI)1097-4628(19961205)62:10<1761::AID-APP30>3.0.CO;2-1
  14. Mater. Lett v.38 A. Das;G. Ghosh;S. Dhara;A. Patnaik https://doi.org/10.1016/S0167-577X(98)00136-0
  15. Surf. Coat. Technol. v.104 L. Guzman;R. Celva;A. Miotello;E. Voltolini;F. Ferrari;M. Adami https://doi.org/10.1016/S0257-8972(98)00430-7
  16. J. Vac. Sci. Technol. A v.14 W. K. Choi;S. K. Koh;H. J. Jung https://doi.org/10.1116/1.580024
  17. Theoretical Studies of the Mechanics of the Fibre-matrix Interface in Composites: Interface in Composites L. B. Greszczuk
  18. PhD thesis B. Barbier
  19. Comp. Sci. Technol. v.48 L. M. Zhou;J. K. Kim;Y. W. Mai https://doi.org/10.1016/0266-3538(93)90140-C
  20. Carbon v.39 S. J. Park;J. S. Kim https://doi.org/10.1016/S0008-6223(01)00015-X
  21. Carbon v.31 R. H. Bradley;X. Ling;I. Sutherland https://doi.org/10.1016/0008-6223(93)90064-H
  22. Carbon v.37 S. J. Park;B. J. Park;S. K. Ryu https://doi.org/10.1016/S0008-6223(98)00318-2
  23. J. Mater. Sci. v.28 L. T. Drzal;M. Madhukar https://doi.org/10.1007/BF01151234
  24. Mater. Res. Proc. v.79 P. M. A. Sherwood
  25. Carbon v.38 S. J. Park;M. S. Cho https://doi.org/10.1016/S0008-6223(99)00210-9
  26. Comp. Sci. Technol. v.42 G. Desarmot;J. P. Favre https://doi.org/10.1016/0266-3538(91)90016-I
  27. J. Mater. Sci. v.19 R. J. Gray https://doi.org/10.1007/BF00540456
  28. J. Reinf. Plast. Comp. v.6 M. R. Piggott;D. Andison https://doi.org/10.1177/073168448700600306
  29. Comp. Sci. Technol. v.22 P. S. Chua;M. R. Piggott https://doi.org/10.1016/0266-3538(85)90079-X
  30. J. Eng. Mater.Technol. v.115 G. L. Povirk;A. Needleman https://doi.org/10.1115/1.2904220
  31. Fibre Sci. Technol. v.17 L. S. Penn;S. M. Lee https://doi.org/10.1016/0015-0568(82)90038-0
  32. J. Mater. Sci. v.7 P. Lawrence https://doi.org/10.1007/BF00549541
  33. 4emes Journees Nat. Comp. G. Desarmot;M. Sanchez;G. V. Pluralis(ed.)
  34. J. Appl. Phys. v.3 H. L. Cox
  35. Carbon v.38 M. C. Paiva;C. A. Bernardo;M. Nardin https://doi.org/10.1016/S0008-6223(99)00266-3
  36. Comp. Sci. Technol. v.61 T. Ramanathan;A. Bismarck;E. Schulz;K. Subramanian https://doi.org/10.1016/S0266-3538(00)00239-6
  37. J. Colloid Interface Sci. v.228 S. J. Park;M. H. Kim;J. R. Lee;S. W. Choi https://doi.org/10.1006/jcis.2000.6953
  38. Composites Part A v.32 M. A. Montes-Moran;A. Martinez-Alonso;J. M. D. Tascon;R. J. Young https://doi.org/10.1016/S1359-835X(00)00109-3
  39. J. Adhes. Sci. Technol. v.69 P. J. Hine;S. El Muddarris;D. E. Packham