• Title/Summary/Keyword: Thermoregulatory Responses

Search Result 29, Processing Time 0.024 seconds

Thermoregulatory Responses of Differently Designe Cleanroom Garments (고청정 작업환경에서 방진복 디자인이 인체 생리반응에 미치는 영향)

  • 이윤정;정찬주;정재은
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.811-820
    • /
    • 2002
  • The physical responses and subjective sensations of different cleanroom garments were compared in order to discover which cleanroom garment design could minimize pollution of the working environment by dust from the worker, maintain a pleasant microclimate and provide effective thermoregulation. A. Coverall with non-detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice B. Coverall with detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice C. Separate top with non-detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice D. Coverall with non-detachable hood, set-in sleeves, raschell net on the bodice E. Coverall with non-detachable hood, raglan sleeves (back), l00% cotton inner wear (upper body) The results of the experiment were as follows. Because the hood covered the shoulder and the chest areas, the chests temperature of the worker wearing garment E was quite higher than those wearing other garment designs. For fabric that has been coated in order to prevent dust, layered designs should be avoided in order to prevent skin temperature from rising. Compared with layers of underwear, it would be more effective to attach a see-through raschell net which clings to the body. Thermal sensations were also highest in garment E, reinforcing the finding that layered designs should be avoided. Through the experiment, it was found that a new material coverall with a non-detachable hood was effective in minimizing dust, suppressing skin temperature increases, maintaining a superior microclimate and providing pleasant subjective sensations.

Studies on Vascular Responses to Cold Stimuli in the Korean Diving Women (한냉자극(寒冷刺戟)에 대한 한국해녀의 혈관계 반응(血管系反應)에 관한 연구)

  • Paik, K.S.;Kim, C.K.;Han, D.S.;Kang, B.S.;Hong, S.K.
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.59-66
    • /
    • 1969
  • Experiments on thermoregulatory responses to cold immersion stimulus were carried out in September, 1968 (summer studies) and February, 1969 (winter studies). Eight each of ama and control subject were selected at random from a same community in Yong-Do Island, Pusan. The results obtained are summarized as follows: 1) The rate of fall in muscle temperature of forearm during a 30 min-immersion in $6^{\circ}C$ water bath was significantly slower in the ama in winter and was about the same in the two groups in summer. However, the magnitude of change in the skin temperature and the heat fluxes observed during immersion period was not significantly different either between groups or between seasons. 2) Both finger blood flow and skin temperature during one hr-immersion in $6^{\circ}C$ water bath decreased significantly in the ama as compared to the control. The magnitude of cold-induced vasodilatation during immersion period was significantly greater in the control in winter. However, the time of onset and blood flow at onset showed no significant relation between groups. 3) The magnitude of reactive hyperemia after a 5 min-arterial occlusion in both air and $15^{\circ}C$ water bath was significantly lower in the ana than in the control. In control subjects, post-occluded blood flow in water was significantly greater than in air, while in the ama it decreased to 1/2 of control values. The time required for the return of blood flow to resting values in the air was faster in the ama than in the control but was the same in water in the two groups. 4) The results suggest that vasoconstrictor tone increased in the ama in winter, indicating the development of vascular adaptation as a part of cold acclimatization.

  • PDF

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions (여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색)

  • Jung, Jae-Yeon;Kang, Juho;Seol, Seonhong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

Effects of Wearing COVID-19 Protective Face Masks on Respiratory, Cardiovascular Responses and Wear Comfort During Rest and Exercise (휴식과 운동 중 COVID-19 대응 보건용 마스크 착용이 호흡·심혈관계 반응 및 착용감에 미치는 영향)

  • Jung, Jae-Yeon;Kang, ChanHyeok;Seong, Yuchan;Jang, Se-Hyeok;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.6
    • /
    • pp.862-872
    • /
    • 2020
  • This study explores the effects of facemasks on respiratory, thermoregulatory, cardiovascular responses during exercise on a treadmill and at rest. Five male subjects (25.8 ± 0.8 y, 171.8 ± 9.2 cm in height, 79.8 ± 28.1 kg in weight) participated in the following five experimental conditions: no mask, KF80, KF94, KF99, and N95. Inhalation resistance was ranked as KF80 < KF94 < N95 < KF99 and dead space inside a mask was ranked as KF80 = KF94 < N95 < KF99. The surface area covered by a mask was on average 1.1% of the total body surface area. The results showed no significant differences in body core temperature, oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate or subjective perception among the five experimental conditions; however, cheek temperature, respiratory ventilation and blood pressure were greater for KF80 or KF94 conditions when compared to KF99 or N95 conditions (p<0.05). The differences among mask conditions are attributed to the dead space or specific designs (cup type vs pleats type) rather than the filtration level. In addition, the results suggest that improving mask design can help mitigate respiratory resistance from increased filtration.

Performance of Conductive Gloves When Using Electronic Devices in a Cold Environment - Manual Dexterity, Usability and Thermoregulatory Responses - (겨울철 전자 기기 사용을 위한 전도성 보온장갑의 착용성 평가 - 손의 기민성과 사용성, 체온조절 반응을 중심으로 -)

  • Kwon, JuYoun;Jung, Dahee;Kim, Siyeon;Jeong, Wonyoung;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.686-695
    • /
    • 2020
  • The present study evaluated the manual dexterity and usability of conductive gloves when operating touchscreen devices in the cold. Twelve male subjects (23.3±1.5 years in age) participated in three experimental conditions: no gloves, fabric conductive and lambskin conductive gloves. Manual dexterity was tested using both Purdue Pegboard (PP) and ASTM dexterity tests at an air temperature of 5℃ and air humidity of 30%RH. Glove usability was tested through the following touchscreen tests: tap, double tap, long tab, drag, flick, and multi-touch. The results showed that manual dexterity according to the PP (2.5 mm of a pin diameter) and ASTM tests (8 mm of a stick diameter) was worse for the two glove conditions than for the no glove condition (p<.005). PP dexterity was better for the fabric glove condition than for the lambskin glove condition (p<.05); however, there was no difference in ASTM dexterity between the two glove conditions. Hand and finger skin temperatures were higher for the glove conditions than the bare hand condition (p<.05), with no differences between the two glove conditions. The touchscreen usability was the best for the no glove condition, followed by fabric gloves (p<.05). Wearing either fabric or lambskin gloves diminishes hand dexterity while maintaining hand and finger temperatures at higher levels. For improved hand dexterity in dealing with small numbers, letters on a touchscreen in cold environments, we recommend wearing fabric conductive gloves rather than lambskin conductive gloves.

The Analysis of the Sweating Rate, Skin Temperature on the Upper Body and Subjective Sensations (상반신의 부분별 발한량, 피부온과 주관적 감각 고찰)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.993-999
    • /
    • 2013
  • This study aimed to measure the amount of sweating on 12 parts of the upper body using absorption fabric and analyze subjective sensations. The study was conducted with 9 male subjects in climate chamber controled at $30{\pm}0.5^{\circ}C$, and $55{\pm}5%$ RH. The result was that sweating amount of the upper back part was significantly more than upper front part. We assumed that forced convection flow cased by exercise decreased the sweating rate in the front. The skin temperature of upper front body rapidly decreased as soon as exercise starts and gradually increased with cessation of exercise. On the other hand, the skin temperature of palm increased with exercise and showed continuous increasing even exercise stopping all the experimental period. This is caused by thermoregulatory responses through vasodilatation on the peripheral area. Subjective sensations, such as thermal sensation, wet sensation, and thermal comfort showed the highest score at the time of exercise stop. This means the subjects felt more hot, wet, and uncomfortable after exercise stopped. Bur after wiping of sweat, subjective sensation scores were recovered rapidly. The present study has provided more detailed information on the upper body sweat distribution than previously available, which can be used in clothing design, thermo-physiological modeling, and thermal manikin design. We also think that results of the present study will play an important role in making the sweat distribution map.

Rectal Temperature of Lactating Sows in a Tropical Humid Climate according to Breed, Parity and Season

  • Gourdine, J.L.;Bidanel, J.P.;Noblet, J.;Renaudeau, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.832-841
    • /
    • 2007
  • Rectal Temperature;Thermoregulation;Sows;Breed;The effects of season (hot vs. warm) in a tropical humid climate, parity (primiparous vs. multiparous) and breed (Creole: CR, Large White: LW) on rectal temperature (RT) were studied for a total of 222 lactations obtained in 85 sows (43 CR and 42 LW; 56 primiparous and 166 multiparous) over a 28-d lactation, between June 2002 and April 2005. Mean daily ambient temperature was higher during the hot season than during the warm season (26.0 vs. $24.1^{\circ}C$) and relative humidity was high and similar in both seasons (89% on average). At farrowing, BW was lower (172 vs. 233 kg) and backfat thickness was higher (37 vs. 21 mm) in CR than in LW sows (p<0.01). During the hot season, the reduction of average daily feed intake (ADFI) was more pronounced in LW than in CR sows (-920 vs. -480 g/d, p<0.05). Rectal temperature was higher at 1200 than at 0700hr, which coincides with the maximum and the minimum values of daily ambient temperature. The daily RT increased ($+0.9^{\circ}C$; p<0.01) between d -3 and d 7 (d 0: farrowing day), remained constant between d 7 and d 25 and decreased (p<0.01) thereafter (i.e. $-0.6^{\circ}C$ between d 25 and d 32). The average daily RT was significantly higher during the hot than during the warm season (38.9 vs. $38.6^{\circ}C$; p<0.01). It was not affected by breed, but the difference in RT between the hot and warm seasons was more pronounced in LW than in CR sows (+0.4 vs. $+0.2^{\circ}C$; p<0.05). Parity influenced the RT response; it was greater in primiparous than in multiparous sows (38.9 vs. $38.7^{\circ}C$; p<0.01). This study suggests that thermoregulatory responses to heat stress can differ between breeds and between parities.

Thermoregulatory Responses of AM & PM with Body Fat Rate at a Hot Environment (서열환경하에서 체지방률에 따른 오전과 오후의 체온조절반응)

  • Kim, Seong-Suk;Lee, Jung-Sug;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 2005
  • With regard to the fact that temperature of human body remains almost constant at $37^{\circ}C$, changes by circadian variation, this study intended to investigate the effect of circadian rhythm on physiological responses of human body according to body fat rate. Fifteen healthy adult women were recruited for this study and were measured body fat as a method of bio impedance. We organized subjects into three groups ; low body fat group(group L-less than 20% of body fat), medium body fat group(group M-20%~30% of body fat) and high body fat group(group H-more than 30% of body fat). The experiment was carried out in a climate chamber of $32^{\circ}C$, 60% RH with the repeat of 'Exercise' and 'Rest' period. Subjects participated in two experiments, one is morning experiment(called 'AM'), the other is afternoon experiment (called 'PM'). The results of this study are as follows ; As to the variation of rectal temperature, group L and M had a significant difference in the time of the day between AM and PM, but group H had almost the same rectal temperature in the two kinds of experimental time. The reason why group H had a smaller difference in the circadian rhythm of rectal temperature in this study is estimated at the Budd et al.(1991)'s results that body fat had effects on reduction in thermogenesis, radiation, mean skin temperature, and increase in insulation of the tissues. Group M had the highest mean skin temperature in the 'PM'. All the 3 groups didn't have stable values in 'AM'. But it showed more stable in 'PM' than 'AM'. Sweat rate was the highest in group H in both 'AM' and 'PM'. Group M had larger sweat rate in 'PM' than 'AM'. but in group L and H, sweat rate was almost the same in two kinds of time of the day. This result suggests that who have more or less body fat have larger difference in sweat rate between morning and afternoon than who have normal body fat.

Thermophysiological Responses of Wearing Safety Hat for Working at a Hot Environment (서열환경하에서 안전모 착용시의 인체생리학적 반응)

  • 박소진;김희은
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • The present study is aimed to investigate the effect of the safety hat on the balance of body temperature by observation of the physiological response under hot working environment. The experiment was carried out in a climate chamber of 3$0^{\circ}C$, 50%RH for 70 minutes. To compare the two kinds of safety hat, 5 healthy male subjects worn safety hat without hole (called 'without hole') or safety hat with hole (called 'with hole') according to a randomized cross-over design. The main results of this study are as fellows: Rectal temperature and heart rate were significantly lower level in 'with hole'than in 'without hole'. The mean skin temperature was significantly higher in 'without hole'than in 'with hole'. Blood pressure were significantly low in 'with hole'. Sweat rate which was measured by weight loss before and after experiment was higher in 'without hole'. In subjective ratings, subjects replied more hot, more uncomfortable and more wet, they felt more fatigue in condition of 'without hole'. Work ability which was measured by a grip strength dynamometer was higher in 'with hole'. Safety hat which can be used for safety of the brain in work place is meaningful device of behavioral thermoregulatory response under the hot working environment. The safety hat which is designed for proper ventilation and hygiene can maintain the homeostasis of body temperature by releasing body temperature efficiently.