• Title/Summary/Keyword: Thermoplastic Composites

Search Result 204, Processing Time 0.033 seconds

Physical Properties of Flame Retardant Particulate Reinforced Thermoplastic Polymer Composites for Cold-Resistant Cable (내한성 케이블 적용을 위한 난연 입자 강화 열가소성 고분자복합재료의 기계적 특성평가)

  • Lee, Jinwoo;Shim, Seung Bo;Park, Jae Hyung;Lee, Ji Eun
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • The demand for cold-resistant cable material is increasing due to the rapid increase in the development of devices that operate in a low temperature environment. Cold tolerance of a thermoplastic polymer largely depends on the type and content of about 20 or more additives used to make the polymer. The phenomenon of polymer hardening at low temperature can be classified into hardening by simple temperature effect, embrittlement at the glass transition temperature, and hardening by crystallization of polymers that tend to crystallize. In this study, a thermoplastic polymer having a low glass transition temperature, a flame retardant, and an additive were mixed to evaluate the mechanical properties of a thermoplastic polymer composite material for electric wires. It has been confirmed that mechanical properties and processability are determined depending on the additives and compatibilizers added, and this study is considered to be useful as basic data for optimization to meet the performance requirements of wires developed for low-temperature use.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

Mechanical Properties of Wood-Fiber Thermoplastic Composites (목섬유(木纖維)와 열가소성(熱可塑性) 플라스틱 복합재료(複合材料)의 기계적(機械的) 성질(性質))

  • Park, Byung-Dae;Lim, Kie-Pyo;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.46-53
    • /
    • 1994
  • This study was conducted to investigate a feasibility of manufacturing wood fiber thermoplastic composites and to evaluate their mechanical properties. Wood fiber as a potential reinforcing filler was compounded with two thermoplastics (polypropylene and high density polyethylene) in high intensity thermokinetic plastic mixer aided with a wetting agent. It was found that wood fiber thermoplastic composites could be manufactured by injection molding process. The tensile and flexural strength of injection molded specimens were improved greatly with increasing wood fiber concentration. Tensile and flexural modulus increased proportionately with wood fiber concentration. Wood fiber provided reinforcement with thermoplastics in terms of strength and modulus. However, the percent elongation at break and energy to break were reduced with increasing wood fiber loadings. Impact strength also showed similar trend.

  • PDF

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

Effects of the Glass Fiber Characteristics on the Mechanical Properties of Thermoplastic Composite (유리섬유의 특성이 열가소성 복합재료의 기계적 성질에 미치는 영향)

  • Lee, Jung-Hui;Lee, Jeong-Gwon;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1697-1702
    • /
    • 2000
  • This study has been performed to investigate the effects of glass fiber characteristics on the mechanical properties of thermoplastic composite. The surface of glass fiber was coated with the silan e to enhance the bonding strength between fiber and matrix. A micro-droplet pull-off test was performed to investigate the influence of the silane concentration on the bonding strength. The maximum bonding strength was observed around 10.8% silane concentration. In order to examine the influence of the fiber length and fiber content on the properties of the composite, the composite materials involving tile fiber lengths of 5mm, 10mm, 15mm 20mm, and 25mm were tested. The composites used contain 20%, 30%, and 40% by weight of glass fibers. Tension and flexural tests were performed to investigate their mechanical properties of the composites. The tensile strength and tensile modulus of the composite increase with increasing the glass fiber content. The tensile modulus increases slightly with increasing the fiber length. The maximum tensile strength is observed around the fiber length of 15-20mm. The flexural modulus and strength also increase slightly with increasing the fiber length.

The Influence of Mechanical Properties with the Number of Recycling of Fiber-reinforced Thermoplastic Composites Damaged by Impact (충격에 의해 손상된 섬유강화 열가소성 수지 복합재료의 재활용 횟수에 따른 물성의 변화)

  • Bae, Kwak Jin;Lee, Joon Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.75-79
    • /
    • 2022
  • In this study, the effect of mechanical and chemical properties of glass fiber reinforced thermoplastic (GFRTPs) according to the number of recycling was confirmed. The composite materials were manufactured through a hot press compression molding process using an E-glass chopped strand mat and a polypropylene film. Four specimens were named according to the number of recycled test repeat: First manufacture, 1st Recycle, 2nd Recycle, and 3rd Recycle. To investigate the mechanical properties of the prepared specimen, tensile test, flexural test, drop-weight impact test, differential scanning calorimetry (DSC), and field emission electron gun-scanning electron microscope (FE-SEM) was performed. As a result, as the number of recycling steps repeat, the degree of crystallization, tensile strength, elastic modulus, and flexural strength were increased, but the impact properties were greatly reduced.

Evaluation of the Impact on Manufacturing Temperature and Time in the Production Process of Bio-composites (바이오복합재료 제조 공정시 제조온도 및 시간에 의한 영향 평가)

  • Park, Sang-Yong;Han, Gyu-Seong;Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.29-37
    • /
    • 2005
  • The main objective of this research was conducted to evaluate the impacts on the thermoplastic polymer which is a matrix polymer and the rice husk flour (RHF) which is a reinforcing filler relative to the manufacturing temperature and time when bio-composites were manufactured. In order to evaluate the impacts on the rice husk flour relative to the manufacturing temperature, the rice husk flour was persevered for 10 minutes to 2 hours period at $220^{\circ}C$ temperature which was then added with the polypropylene (PP) and low-density polyethylene (LDPE) to complete the manufacturing process of the bio-composites and measure the corresponding mechanical properties. As preserving time increased at $220^{\circ}C$, the tensile and impact strength were decreased due to the thermal degradation of the main components within the rice husk flour. The thermogravimetric analysis (TGA) was used to measure weight loss caused by the actual manufacturing temperature and the result was that the thermoplastic polymer had not scarcely occurred weight change, but there had been increasing rate of weight loss relative to time for the rice husk flour and the bio-composites under the consistent temperature of $220^{\circ}C$ for 2 hour time period. Therefore, the proper manufacturing temperature and time settings are significantly important features in order to prevent the reduction of mechanical properties which were induced throughout the manufacturing process under the high manufacturing temperature.

Olefinic Thermoplastic Elastomer and Styrenic Thermoplastic Elastomer (올레핀/스티렌 열가소성 탄성체 및 올레핀/$\alpha$-올레핀 열가소성 탄성체)

  • Kim, Dong-Hyun;Kim, Hyun-Joon;Lee, Bum-Jae
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.152-155
    • /
    • 2010
  • Olefinic thermoplastic elastomer and styrenic thermoplastic elastomer have broad hardness range, high flexibility, low density, and excellent recyclability. But, they are limited in applications due to their low elasticity and low operating temperature. To overcome these problems, olefin/styrene or olefin/$\alpha$-olefin copolymers have been developed. In this review, we described some examples of olefin/styrene or olefin/$\alpha$-olefin copolymer and introduced their properties. Although olefin/styrene or olefin/$\alpha$-olefin copolymer have various weaknesses, they have a great potential in the future.

Fabrication of PP/Carbon Fiber Composites by Introducing Reactive Interphase and its Properties (반응성 고분자 계면상을 도입한 PP/탄소섬유 복합재료의 제조와 물성)

  • 김민영;김지홍;김원호;최영선;황병선
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In general, the development of thermoplastic composites has been confronted with difficult problems such as the weak bonding strength between fibers and matrix. However, now, such problems are being surmounted by the development of resins, the improvement of processes, and introduction of interphase. Especially, the introduction of interphase between fiber and matrix can help a dissipation of the impact energy and provide a good adhesion between fibers and matrix. In this study, polymeric interphase was introduced by electrodeposition, modified polypropylene was added to improve the weak bonding strength between interphase and polypropylene matrix. By evaluation of interlaminar shear strength and impact strength of the composites, it was found that composites with introduced composites showed higher mechanical properties than those of composites without interphase. Reactive polymers which have either anhydride or free acid functional group were used as interphase materials, and these polymers also behave as charge carrier in aqueous solution during the electrodeposition process. Weight gain on the carbon fibers was evaluated by changing process parameters such as concentration of solution, current density, and electrodeposition time.

  • PDF