• Title/Summary/Keyword: Thermophile

Search Result 50, Processing Time 0.028 seconds

Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities

  • Wang, Guo-hua;Xie, Jian-ping;Li, Shou-peng;Guo, Yu-jie;Pan, Ying;Wu, Haiyan;Liu, Xin-xing
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1871-1880
    • /
    • 2016
  • Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

Production and Characterization of Monoclonal Antibodies to Glutamate Dehydrogenase from Thermophile Sulfolobus solfataricus

  • Cho, Sung-Woo;Ahn, Jee-Yin;Bahn, Jae-Hoon;Jeon, Seong-Gyu;Park, Jin-Seu;Lee, Kil-Soo;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.587-594
    • /
    • 2000
  • Monoclonal antibodies against glutamate dehydrogenase (GDH) from Sulfolobus solfataricus were produced and characterized using epitope mapping and biosensor technology, Five monoclonal antibodies raised against S. solfataricus GDH were each identified as a single protein band that comigrated with purified S. solfataricus GDH on the SDS-polyacrylamide gel electrophoresis and immunoblot. Epitope mapping analysis showed that only one subgroup among the antibodies tested recognized the same peptide fragments of GDH. Using the anti-S. solfataricus GDH antibodies as probes, the cross-reactivities of GDHs from various sources were investigated and it was found that the mammalian GDH is not immunologically related to S. solfataricus GDH. The structural differences between the microbial and mammalian GDHs were further investigated using biosensor technology (Pharmacia BIAcore) and monoclonal antibodies against S. solfataricus and bovine brain. The binding affinity of S. solfataricus glutamate dehydrogenase anti-S. solfataricus for GDH ($K_D$=11 nM) was much tighter than that of anti-bovine for GDH ($K_D$=450 nM). These results, together with the epitope mapping analysis, suggest that there may be structural differences between the two GDH species, in addition to their different biochemical properties.

  • PDF

Isolation and Characterization of Thermophilic Microorganism Producing Starch-hydrolyze Enzyme (한국 토양으로부터 전분가수분해효소를 생산하는 고온성 균주의 선별과 동정)

  • Choi, Wonseok;Bai, Dong-Hoon
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • A thermophilic microorganism, which is able to hydrolyze starch, was isolated from soil and compost in Korea. It was Gram-positive, rod-shaped, catalase positive, nonmotile, glucose and mannitol fermentative, xylose oxidative, and spore forming microorganism. It also has an ability to hydrolyze casein and gelatin. The color of colony was yellowish white. The sequence of 16S rDNA of strain 2719 showed 99.5% sequence homology with the sequence of 16S rDNA of Bacillus thermoglucosidasius. On the basis of biochemical and physiological properties and phylogenetic analysis, the isolated strain was named as Bacillus thermoglucosidasius 2719.

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

A Study on Microbiological Critical Limit in Sterilization processing of Fried Kimchi Soup (볶음김치스프 제조공정중 살균공정에 대한 미생물학적 한계기준에 관한 연구)

  • Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4018-4024
    • /
    • 2012
  • The purpose of this study was to application in the HACCP(Hazard Analysis Critical control) system of fried kimchi soup. The establishment of Critical limit during sterilization processing was measured by sterilization temperature, sterilization time, sensory test, storage test and pH change in storage for 30 days (May 1~30, 2012). Before sterilization, general bacteria, coliform and thermophile bacteria were detected to be $6.00{\times}10^5\;CFU/m{\ell}$, $7.50{\times}10^2\;CFU/m{\ell}$ and $2.75{\times}10^2\;CFU/m{\ell}$, respectively. In contrast, all microbial was not detected after sterilization($90{\pm}5^{\circ}C$, $22{\pm}5$ mins). The sensory test was decided as the most delicious kimchi according to $90{\pm}5^{\circ}C$, $22{\pm}5min$. In conclusion, the sterilization process of fried kimchi soup would be a great alternative to prevention, decreasing and removing of harmful microorganism, such as general bacteria, coliform and thermoduric bacteria etc. Therefore, the critical limit of sterilization temperature and time for quality control and biosafety was established at $90{\pm}5^{\circ}C$, $22{\pm}5$ mins. And it suggested that HACCP plan was necessary for monitoring method, monitoring cycle, problem solving method, education, training and record management during sterilization processing.

Symbiobacterium toebii Sp. nov., Commensal Thermophile Isolated from Korean Compost

  • Sung, Moon-Hee;Bae, Jin-Woo;Kim, Joong-Jae;Kim, Kwang;Song, Jae-Jun;Rhee, Sung-Keun;Jeon, Che-Ok;Choi, Yoon-Ho;Hong, Seung-Pyo;Lee, Seung-Goo;Ha, Jae-Suk;Kang, Gwan-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1013-1017
    • /
    • 2003
  • A thermophilic nonspore-forming rod isolated from hay compost in Korea was subjected to a taxonomic study. The microorganism, designated as $SC-1^T$, was identified as a nitrate-reducing and nonmotile bacterium. Although the strain was negatively Gram-stained, a KOH test showed that the strain $SC-1^T$ belonged to a Gram-positive species. Growth was observed between 45 and $70^{\circ}C$. The optimal growth temperature and pH were $60^{\circ}C$ and pH 7.5, respectively. The G+C content of the genomic DNA was 65 mol% and the major quinone types were MK-6 and MK-7. A phylogenetic analysis based on 16S rDNA sequences revealed that the strain $SC-1^T$ was most closely related to Symbiobacterium thermophilum. However, the level of DNA-DNA relatedness between strain $SC-1^T$ and the type strain for Symbiobacterium thermophilum was approximately 30%. Accordingly, on the basis of the phenotypic traits and molecular systematic data, the strain $SC-1^T$ would appear to represent a new species within the genus Symbiobacterium. The type strain for the new species is named $SC-1^T$ ($=KCTC\;0307BP^T;\;DSM15906^T$).

Studies on the $\beta$-Galactosidase from Thermphilic Bacterium - Physiological Characteristics of the Selected Thermophile - (고온성 세균의 $\beta$-Galactosidase에 관한 연구 ( I ) - 분리고온균의 생리적 특성 -)

  • 이종수;오만진;이석건;김찬조
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 1983
  • This experiment was carried out to elucidate the thermotolerant properties of a thermophilic bacterium which isolated from soils of the hot springs area and selected for the $\beta$-galactosidase production. Biochemical and physiological characteristics of this strain were studied, including the investigation on the fatty acid composition for its neutral fats. The results obtained were summarized as follows. 1. This bacterium was identified as a strain belong to the genus Thermus. 2. Optimal temperature and pH for growth of this strain were $65^{\circ}C$ and pH 6.5 respectively, and it was found to be an absolute thermophilic bacterium which could not grow at 37$^{\circ}C$. 3. No growth was obtained in the medium which contained more than 1.0% of sodium chloride. 4. The tolerable concentration of antobiotics were 10$\mu\textrm{g}$ of penicillin G per $m\ell$ of medium and 0.5$\mu\textrm{g}$ of chloramphenicol per $m\ell$ respectively 5. This strain had autotrophilic requirements for calcium-pantothenate and pyridoxine-HCO as an-essential factor and for niacin as a stimulative factor. 6. Fatty acid composition of neutral fats of the strain was palmitic acid. 60.20%; lauric acid, 11.8%; myristic acid, 7.56%, behenic acid, 4.25%; capric acid, 1.77%; stearic acid, 2.13%; arachidic acid, 1.53%; and others unidentified, 10.7%.

  • PDF

Production of Fructose 6-Phoschate from Starch Using Thermostable Enzymes (내열성 효소를 이용한 전분으로부터 6-인산과당의 제조)

  • Kwun, Kyu-Hyuk;Cha, Wol-Suk;Kim, Bok-Hee;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.345-350
    • /
    • 2007
  • Phosphosugars are found in all living organisms and are commercially valuable compounds with possible applications in the development of a wide range of specialty chemicals and medicines. In carbohydrate metabolism, fructose 6-phosphate (F6P) is an essential intermediate formed by phosphorylation of 6' position of fructose in glycolysis, gluconeogenesis, pentose phosphate pathway and Calvin cycle. In glycolysis, F6P lies within the glycolysis metabolic pathway and is produced by isomerisation of glucose 6-phosphate. For large-scale production, F6P could be produced from starch using many enzymes such as pullulanase, starch phosphorylase, isomerase and mutase. In enzymatic reactions carried out at high temperatures, the solubility of starch is increased and microbial contamination is minimized. Thus, thermophile-derived enzymes are preferred over mesophile-derived enzymes for industrial applications using starch. Recently, we reported the production of glucose 1-phosphate (G1P) from starch by Thermus caldophilus GK24 enzymes. Here we report the production of F6P from starch through three steps; from starch to glucose 1-phosphate (glucan phosphorylase, GP), then glucose 6-phosphate (phosphoglucomutase, GM) and then F6P (phosphoglucoisomerase, GI). Using 200 L of 1.2% soluble starch solution in potassium phosphate buffer, 1,253 g of G1P were produced. Then, 30% yields of F6P were attained at the optimum reaction conditions of GM : G1 (1 : 2.3), 63.5$^{\circ}C$, and pH 6.85. The optimum conditions were found by response surface methodology and the theoretical values were confirmed by the experiments. The optimum starch concentrations were 20 g/L under the given conditions.

Thermophile mushroom cultivation in Cambodia: Spawn production and development of a new substrate, acacia tree sawdust

  • Chang, Hyun-You;Huh, Youn-ju;Soeun, Pisey;Lee, Seung-ho;Song, Iva;Sophatt, Reaksmey;Seo, Geum-Hui
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • To minimize cultivation costs, prevent insect-pest infestation, and improve the production efficiency of thermophilic mushrooms, plant substrates obtained from local areas in Cambodia were used for production of both spawn and mushrooms. In this experiment, different sawdusts different organic wastes and grain ingredients and analyzed for improvement of spawn-production efficiency. Four thermophilic mushroom species, Pleurotus sajor-caju (oyster mushroom, Sambok), Ganoderma lucidum (deer horn shaped), Auricularia auricula (ear mushroom), and Lentinula edodes (shiitake), were used to identify efficient new substrates for spawn and mushroom production. Although the mycelia in the rubber tree sawdust medium showed a slightly slower growth rate (10.9 cm/15 days) than mycelia grown in grains (11.2 cm/15 days in rice seeds), rubber tree sawdust appeared to be an adequate replacement for grain spawn substrates. Th findings indicate that rubber tree sawdust, sugarcane bagasse, and acacia tree sawdust supplemented with rice bran and calcium carbonate could be new alternative the substrates for. Although sugarcane bagasse and rubber tree sawdust showed similarly high biological efficiencies (BE) of 60% and 60.8%, respectively, acacia tree sawdust exhibited relatively a low biological efficiency of 22.4%. However, it is expected that acacia sawdust has potential for the mushroom cultivation when supplemented with currently used sawdust substrates in Cambodia, because of its relatively low price. The price of the sawdust (20 kg sawdust= 6500 Riel or 1.6 USD) currently used was 6.5 times higher than the price of acacia sawdust (201000 Riel or 0.25 USD). Therefore, utilization for acacia sawdust for mushroom cultivation could become feasible as it would reduce by producing costs of mushrooms in rural areas of Cambodia.

Hydrolytic and Metabolic Capacities of Thermophilic Geobacillus Isolated from Litter Deposit of a Lakeshore (수변 낙엽퇴적층에서 분리한 호열성 Geobacillus의 물질 분해 특성)

  • Baek, Hyun-Ju;Zo, Young-Gun;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.32-40
    • /
    • 2009
  • To understand contribution of thermophilic microorganisms in decomposition of litter deposits on shore of lakes, we surveyed a lakeshore litter deposit for bacteria growing at $60^{\circ}C$. Ten thermophilic isolates were selected for in-depth characterization, based on their high capacity to degrade high molecular weight organic compounds. Based on phylogenetic analysis on their 16S rRNA gene sequences, all isolates were identified as Geobacillus. The optimal growth temperature and pH of the strains ranged $55{\sim}60^{\circ}C$ and 6.0${\sim}$8.0, respectively. Salinity was inhibitory to the growth of the isolates, showing marked decrease of growth rates at 3% salinity. Based on activities of hydrolytic enzymes and profiles of carbohydrate utilization (determined by API 50 CHB kit), three G. stearothermophilus strains showed patterns clearly distinctive from other isolates. Two G. kaustophilus strains also demonstrated distinctiveness in their metabolic pattern and ecological parameters. However, ecological and metabolic profiles of the other five isolates were more variable and showed some degree of digression from their phylogenetic classification. Therefore, it could be concluded that endospore-forming thermophilic bacteria in lakeshore litter deposits contribute to degradation of organic materials with diverse ecological niches while having successions similar to microbial flora in compost. We propose that the thermophilic isolates and/or their thermo-tolerant enzymes can be applied to industrial processes as appropriate mixtures.