• Title/Summary/Keyword: Thermomechanical characteristics

Search Result 51, Processing Time 0.026 seconds

Thermomechanical Coupled Analysis of Carbon/phenolic Composite Structures in Reentry Environments (재진입 환경의 탄소/페놀릭 복합재 구조물의 열기계적 연계 해석)

  • Son, Myeong Jin;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.414-421
    • /
    • 2019
  • In this paper, thermomechanical coupled analysis of carbon/phenolic composites structures in reentry environment was performed. The interface of thermomechanical coupled analysis was constructed using commercial software. The governing equations of temperature and displacement fields were considered to simulate change of physical behavior due to pyrolysis and ablation effects. The results of thermomechanical coupled analysis were compared with the results of ablation test using arc-heated wind tunnel. Also, the structural stability of reentry capsule was analyzed using the analysis interface. The excellent ablation characteristics and thermal protection effects of the carbon/phenolic composites were confirmed and the constructed analysis interface can be effectively used to perform thermal protection system design.

Cure Shrinkage Characteristics of Resin Formulations by Thermomechanical Analysis (열기계적 분석법으로 측정된 레진 포뮬레이션의 경화 수축 특성)

  • Seo, Ahn Na;Lee, Jong-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.629-636
    • /
    • 2012
  • Volume shrinkage behavior accompanying the cure of resin formulations might be a critical factor when assembly processes using polymer materials are considered. In this study, cure shrinkage behavior with respect to resin formulation type and heating method was measured on sandwich structure samples by a thermomechanical analyzer (TMA). Quartz, used as a cover material for the sandwich structure, indicated the coefficient of thermal expansion close to $0ppm/^{\circ}C$. When a dynamic heating mode was conducted, a squeeze-out region and a cross-linking region for each resin formulation could be separated clearly with overlapping differential scanning calorimeter results on the TMA results. In addition, a cure shrinkage dominant region and a thermal expansion dominant region in the cross-linking region were distinguished. Consequently, the degree of cure at the initiation of the thermal expansion dominant region was successfully measured. Measurement of all resin formulations indicated the thermal expansion behavior exceeded cure shrinkage before full cure.

The Effect of Thermomechanical Treatment on the Transformation Characteristics and Mechanical Properties in a Cu-Al-Ni-Ti-Mn Alloy (Cu-Al-Ni-Ti-Mn 합금의 변태특성 및 기계적 성질에 미치는 가공열처리의 영향)

  • Kim, C.D.;Lee, Y.S.;Yang, G.S.;Jang, W.Y.;Kang, J.W.;Baek, S.N.;Gwak, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.145-156
    • /
    • 1999
  • The distribution of the second phase, the change of transformation temperature and mechanical properties with thermomechanical treatment conditions were investigated by metallography, calorimetry, EDS, tensile test and fractography in a Cu-Al-Ni-Ti-Mn alloy. The cast structure revealed Ti-rich precipitates($X_L$ phase) between dendrite arms, which have been identified as $(Cu,Ni)_2TiAl$ intermetallic compounds. By homogenizing above $900^{\circ}C$, the $X_L$ phase was melted in the matrix, while the Xs phase was precipitated in matrix and the volume fraction of it was increased. When hot-rolled specimen was betatized below $750^{\circ}C$, recrystallization could not be observed. However, the specimen betatized above $800^{\circ}C$ was recrystallized and the grain size was about $50{\mu}m$, while Xs phase was precipitated in matrix. With raising betatizing temperature, $M_s$ and $A_s$ temperatures were fallen and transformation hysteresis became larger. The strain of the specimen betatized at $800^{\circ}C$ was 8.2% as maximum value. The maximum shape recovery rate could be obtained in the specimen betatized at $800^{\circ}C$ but it was decreased due to the presence of Xs phase with increasing betatizing temperature.

  • PDF

On the Sealing Characteristics Analysis and Design of Bi-Polymer O-ring Seals

  • Kim, Chung Kyun;Ko, Young Bae;Cho, Seung Hyun
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.40-45
    • /
    • 2001
  • The paper deals with a non-linear finite element analysis of the thermomechanical distortions of an elastomeric O-ring seal including a temperature gradient. Axial compression of O-ring seals, as well as the influence of the temperature gradients and various O-ring seal models, are investigated based on the axisymmetric analysis. The highest temperature occurs near the interface of the O-ring between the dovetail groove bottom and the O-ring seal. The calculated FEM results indicate that the composite O-ring with the diametral ratio, 0.8 shows very stable and recommendable compared with other seal models far elevated temperatures and corrosive environments.

  • PDF

Numerical Analysis of Shape Modification for the Composite Structures using SMA Strip Actuator (형상기억합금 작동기를 이용한 복합재료 구조물의 형상 변형 해석)

  • Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • In this paper, the thermomechanical responses of shape memory alloy (SMA) actuators and their applications as the shape adaptive structures combining SMA actuators produced in the form of strip with composite structures are investigated. The numerical algorithm of the 3-D SMA thermomechanical constitutive equations based on Lagoudas model is implemented to analyze the unique characteristics of SMA strip. Also, the incremental SMA constitutive equations are implemented in the user subroutine UMAT by using ABAQUS finite element program. The shape change of structure is caused by initially strained SMA strip bonded on the surface of the composite structure when thermally activated. Numerical results show that SMA strip actuator can generate enough recovery force to deform the composite structure and sustain the deformed shape subjected to large external load, simultaneously.

  • PDF

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments (열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석)

  • Choi, Youn Gyu;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.597-604
    • /
    • 2013
  • A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.

On Some Changes in Polymer Blend Topological and Molecular Structures Resulted from Processing

  • Jurkowski, B.;Jurkowska, B.;Nah, C.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.234-243
    • /
    • 2002
  • A general scheme of a rubber structure is proposed. Using the thermomechanical method(TMA), some changes in the molecular and topological structures for uncured and cured, and unfilled and filled rubbers during processing are shown. In our investigations as region it is understood a complex structure, which is expressed at the thermomechanical curve(TMC) as a zone differed from others in thermal expansion properties. This zone is between the noticed temperatures of relaxation transitions, usually on the level like those determined by DMTA at 1Hz. These regions, which shares, are not stable, and differ in molecular-weight distribution(MWD) of chain fragments between the junctions. Differences in dynamics of the formation of the molecular and topological structures of a vulcanizate are dependent on the rubber formulation, mixing technology and curing time. Some of characteristics of these regions correlate with mechanical properties of vulcanizates what is shown for NR rubbers containing ENR or CPE as a polymeric additive. It is well known that the state of order influences diffusivity of low-molecular substances into the polymer matrix. Because of this, the two topological amorphous regions should influence the distribution of the ingredients and resulting in rubber compounds' heterogeneity, and related properties of cured rubber. Investigation of this problem is expected to be, in the future, one of the essential factors in determining further improvement of polymeric materials properties by compounding with additives and in reprocessing of rubber scrap.

Characteristics of Thermomechanical Pulps Made of Russian Spruce and Larix, and Myanmar Bamboo (러시아산 가문비와 낙엽송, 그리고 미얀마산 대나무로 제조한 열기계펄프 특성 연구)

  • Lee, Ji-Young;Kim, Chul-Hwan;Nam, Hyegeong;Park, Hyunghun;Kwon, Sol;Park, Dong-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.135-146
    • /
    • 2016
  • Three fiber sources including Russian spruce (Picea jezoensis) and larix (Larix leptolepis), and Myanmar bamboo (Phyllostachys bambusoides) for thermomechanical pulp were explored to replace domestic pine (Pinus densiflora) pulp that has some limitations in an aspect of supply and pitch trouble. Thermomechanical pulps were manufactured under the identical condition, and then compared with their representative pulp properties and pulping process. Both Russian larix and Myanmar bamboo contained large amounts of extractives that would negatively affect mechanical pulping processes. Russian spruce showed the least contents in shives and pitch. Russian spruce and domestic pine reached an optimum freeness level within a short pulp processing time, which consumed less amount of refining energy compared to larix and bamboo. In particular, the spruce wood showed the highest brightness level which might lead to a less consumption of bleaching chemicals. It was expected that Russian spruce could be replaced with the domestic pine wood in respect of both pulping process and pulp quality.

Investigation of Residual Stress Characteristics of Specimen Fabricated by DED and Quenching Processes Using Thermo-mechanical Analysis (열-기계 연계 해석을 이용한 에너지 제어 용착 및 담금질 공정으로 제작된 시편의 잔류응력 특성 분석)

  • Hwang, An-Jae;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.113-122
    • /
    • 2021
  • Complicated residual stress distributions occur in the vicinity of a deposited region via directed energy deposition (DED) process owing to the rapid heating and cooling cycle of the deposited region and the substrate. The residual stress can cause defects and premature failure in the vicinity of the deposited region. Several heat treatment technologies have been extensively researched and applied on the part deposited by the DED process to relieve the residual stress. The aim of this study was to investigate the residual stress characteristics of a specimen fabricated by DED and a quenching process using thermomechanical analyses. A coupled thermomechanical analysis technique was adopted to predict the residual stress distribution in the vicinity of the deposited region subsequent to the quenching step. The results of the finite element (FE) analyses for the deposition and the cooling measures show that the residual stress in the vicinity of the deposited region significantly increases after the completion of the elastic recovery. The results of the FE analyses for the heating and quenching stages further indicate that the residual stress in the vicinity of the deposited region remarkably increases at the initial stage of quenching. In addition, it is observed that the residual stress for quenching is lesser than that after the elastic recovery, irrespective of the deposited material.

Fabrication of Superconducting Joints between 61 Filaments of BSCCO 2223 Tapes (61심 BSCCO 2223 고온초전도 선재의 접합부 제조)

  • 김철진;박성창;유재무
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.137-144
    • /
    • 1998
  • High-temperature superconducting joints between 61 filaments of Bi-2223 tapes were fabricated by chem-ical corrosion and repeated thermomechanical process. The silver sheath of the superconducting tape was chemically removed using chemical etchant(NH4OH:H2O2=1:1) from one side of each tape without altering the form of lap joint. The joined region was formed by uniaxial pressing and a series of thermomechanical process and then subjected to properties measurement and microstructural analysis. The critical current(Ic) variation and I-V characteristics along the joint were mesured with several configuration of proble points. Ic value of the transition region of the joint inthe multifilament tape which limit the total current carring capacity of the superconducting tape was higher than that of monofilament tape. But the transition ex-ponent n-value of the multi-filament tape was lower than that of monofilament wire due to the interaction of the individual superconducting core of the multi-filament. The critical current through the joint area was improved by respeated press and reaction annealing treatment.

  • PDF