DOI QR코드

DOI QR Code

Cure Shrinkage Characteristics of Resin Formulations by Thermomechanical Analysis

열기계적 분석법으로 측정된 레진 포뮬레이션의 경화 수축 특성

  • Seo, Ahn Na (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 서안나 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2012.01.18
  • Published : 2012.09.25

Abstract

Volume shrinkage behavior accompanying the cure of resin formulations might be a critical factor when assembly processes using polymer materials are considered. In this study, cure shrinkage behavior with respect to resin formulation type and heating method was measured on sandwich structure samples by a thermomechanical analyzer (TMA). Quartz, used as a cover material for the sandwich structure, indicated the coefficient of thermal expansion close to $0ppm/^{\circ}C$. When a dynamic heating mode was conducted, a squeeze-out region and a cross-linking region for each resin formulation could be separated clearly with overlapping differential scanning calorimeter results on the TMA results. In addition, a cure shrinkage dominant region and a thermal expansion dominant region in the cross-linking region were distinguished. Consequently, the degree of cure at the initiation of the thermal expansion dominant region was successfully measured. Measurement of all resin formulations indicated the thermal expansion behavior exceeded cure shrinkage before full cure.

Keywords

References

  1. K. Oota and M. Saka, Polym. Eng. Sci. 41, 1373 (2001). https://doi.org/10.1002/pen.10837
  2. D. Lu, Q. Tong, and C. P. Wong, Proc. 4th International Symposium and Exhibition on Advanced Packaging Materials: Processes, Properties and Interfaces, p.2, IEEE CPMT, Braselton, GA (1999).
  3. H. Yu, S. G. Mhaisalkar, and E. H. Wong, J. Electron. Mater. 34, 1177 (2005). https://doi.org/10.1007/s11664-005-0248-5
  4. R. R. Braga and J. L. Ferracane, J. Dental Res. 81, 114 (2002). https://doi.org/10.1177/154405910208100206
  5. H. Ishida and H. Y. Low, Macromolecules 30, 1099 (1997). https://doi.org/10.1021/ma960539a
  6. J. H. Lai and A. E. Johnson, Dental Mater. 9, 139 (1993). https://doi.org/10.1016/0109-5641(93)90091-4
  7. W. D. Cook, M. Forrest, and A. A. Goodwin, Dental Mater. 15, 447 (1999). https://doi.org/10.1016/S0109-5641(99)00073-1
  8. C. Li, K. Potter, M. R. Wisnom, and G. Stringer, Compos. Sci. Technol. 64, 55 (2004). https://doi.org/10.1016/S0266-3538(03)00199-4
  9. C. L. Thomas and A. J. Bur, Polymer Eng. Sci. 39, 1619 (1999). https://doi.org/10.1002/pen.11556
  10. V. Fano, I. Ortalli, S. Pizzi, and M. Bonanini, Biomaterials 18, 467 (1997). https://doi.org/10.1016/S0142-9612(96)00171-8
  11. D. Lu and C. P. Wong, Int. J. Adhes. Adhes. 20, 189 (2000). https://doi.org/10.1016/S0143-7496(99)00039-1
  12. J. S. Kim, J. K. Kim, C. Y. Hyun, and J. H. Lee, J. Microelectron. Packag. Soc. 17, 41 (2010).
  13. K. H. Lee and D. G. Lee, Compos. Struct. 86, 37 (2008). https://doi.org/10.1016/j.compstruct.2008.03.018