• Title/Summary/Keyword: Thermoelectric sensor

Search Result 47, Processing Time 0.034 seconds

Performance of the heat flux sensor using thermoelectric semiconductor material (半導體 熱電材料를 利용한 熱流束 測定 센서의 性能)

  • 황동원;정평석;주해호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.622-629
    • /
    • 1988
  • In order to improve the sensitivity of the wafer type heat flux sensor, some heat flux sensors were manufactured and examined by using thermoelectric semiconductor material (bismuth telluride) whose Seebck coefficient is much larger than those of metallic thermocouple materials. Because the thermoelectric element cannot be bended or welded, a peculiar sensor structure and manufacturing process were designed. As a result, it is revealed that the characteristic sensitivity of the manufactured sensor is about 10 times larger than that of marketed sensor even though there are some troubles in stiffness for reciprocal use. If we make this kind of sensors smaller and thinner, it will be a useful method to measure the local heat flux from the surface of complex configuration.

Chromel-Alumel Thermoelectric Flow Sensor Fabricated on Dielectric(Si3N4/SiO2/Si3N4) Membrane (유전체(Si3N4/SiO2/Si3N4)멤브레인 위에 제작된 크로멜-알루멜 열전 유량센서)

  • Lee, Hyung-Ju;Kim, Jin-Sup;Kim, Yeo-Hwan;Lee, Jung-Hee;Choi, Yong-Moon;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2003
  • A chromel-alumel thermoelectric flow sensor using $Si_3N_4/SiO_2/Si_3N_4$ thermal isolation membrane was fabricated. Temperature coefficient of resistance of thin film Pt-heater was about $0.00397/^{\circ}C$, and Seebeck coefficient of chromel-alumel thermocouple was about $36\;{\mu}V/K$. The sensor showed that thermoelectric voltage decreased as thermal conductivity of gas increased, and $N_2$-flow sensitivity increased as heater voltage increased or the distance between heater and thermocouple decreased. When heater voltage was about 2.5 V, $N_2$-flow sensitivity and thermal response time of the sensor were about $1.5\;mV/sccm^{1/2}$ and 0.18 sec., respectively. Linear range in flow sensitivity of the flow sensor was wider than that of Bi-Sb flow sensor.

A NOx gas sensor based on thennopile and embedded tin oxide catalyst (Thermopile과 삽입된 $SnO_2$ catalyst를 이용한 NOx 센서)

  • Lee, Chung-Il;Yoon, Seung-Il;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1829-1832
    • /
    • 2008
  • This paper reports a novel gas sensing method by using a thermoelectric device, thermopile in this case, with an embedded tin oxide catalyst. By using a thin catalyst film, the response time and recovery time were remarkably improved. The fabricated gas sensor was characterized through detecting NOx gas with various concentrations.

  • PDF

Thermoelectric properties of La(1-x)MxCoO3(M=Sr, Ca;x=0, 0.1) ceramics for thermal sensors

  • Kang, Min-Gyu;Cho, Kwang-Hwan;Kang, Chong-Yun;Kim, Jin-Sang;Kim, Sang-Sig;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2009
  • We have investigated the effects of dopant on the thermoelectric properties that $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics fabricated by the conventional solid state reaction method. The Seebeck coefficient of $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics was measured at wide temperature range from 300 K to 673 K. The thermoelectric properties(Seebeck coefficient and electrical resistivity) depend strongly on the kinds of dopants. Sr and Ca dopant decrease the Seebeck coefficient. Density of sintered $La_{0.9}Sr_{0.1}CoO_3$ ceramic at 1523 K was 7.12 $g/cm^2$ and Seebeck coefficient was 35 ${\mu}V/K$ at 663 K. However, the electrical resistivity of the Sr doped sample was low and stable.

Design of P-N Junction Type Thin-Film Thermoelectric Device and their Device Characteristics (P-N Junction Type 박막열전소자제작 및 특성)

  • Kwon, Sung-Do;Song, Hyun-Cheol;Jeong, Dae-Yong;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.142-142
    • /
    • 2007
  • Micro thermoelectric generator has been attractive for the alternative power source to operate the wireless sensor node. In this paper, we designed the column-type micro thermoelectric device and their device characteristics were measured. n-type Bi2Te3 and p-type BiSbTe3 thermoelectric thin films were grown on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) and they were pattemed. The height of thermoelectric film were controlled by the deposition time, temperature and MO-x gas pressure. Seebeck coefficient was measured at room temperature and hole concentration and electrical resistivity of thermoelectric film were also characterized.

  • PDF

Output Property of Ge-Thermopile Sensor (Ge계 열전센서의 출력특성)

  • Park, Su-Dong;Kim, Bong-Seo;Oh, Min-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.265-266
    • /
    • 2006
  • It was well known that thermopile was quiet a competent sensor using to probe the temperature of "hot point" where the temperature can be off the temperature-limitation for normal operation of the main electrical power equipment. In the present work, we aimed for developing new Ge-thermopile materials which can be using a non-contact temperature sensors at various hot-point of the power equipment and evaluation of its output property. As a results of the present works, a new thermopile which were composed Ga-poded p-type and Sb-doped n-type in Ge-semiconductor were designed and manufactured by MBE(Molecular Beam Epitaxy) process and showed superior sensitivity at room temperature.

  • PDF

SPICE-Compatible Modeling of a Microbolometer Package Including Thermoelectric Cooler (열전 냉각기를 포함하는 볼로미터 패키지의 SPICE 등가 모델링)

  • Han, Chang Suk;Park, Seung Man;Kim, Nam-Hwan;Han, Seungoh
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-48
    • /
    • 2013
  • For a successful commercialization of microbolometer, it is required to develop a robust package including thermal stabilizing mechanism. In order to regulate the temperature within some operating range, thermoelectric cooler is generally used but it's not easy to model the whole package due to the coupled physics nature of thermoelectric cooler. In this paper, SPICE-compatible modeling methodology of a microbolometer package is presented, whose steady-state results matched well with FEM results at the maximum difference of 5.95%. Although the time constant difference was considerable as 15.7%, it can be offset by the quite short simulation time compared to FEM simulation. The developed model was also proven to be useful for designing the thermal stabilizer through parametric and transient analyses under the various working conditions.

Design and implementation of thermoelectric dehumidifier using pottier module (Pottier소자를 이용한 열전 제습기 설계 및 구현)

  • 장재철;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.671-679
    • /
    • 1999
  • In this paper, humidity measurement is accomplished using humidity sensor, dehumidify is implemented using general-purpose $\mu$-processorPIC16C54 and thermoelectric module for control measured humidity and input target humidity value proportionally Pottier module product is variety kind of size and characteristic, very important drawing factor is selection necessary heat sink, which is maintain proper thermal resistance from variety kind of module also. From electronic dehumidifier is manufacture by using thermoelectric module, no sound, no vibration, low power consumption of partial space efficient dehumidify proves the validity of this system.

  • PDF