• Title/Summary/Keyword: Thermoelectric semiconductor

Search Result 44, Processing Time 0.054 seconds

Thermoelectric Property of Ball Milled Bi-Te-Sb Powder (볼밀링한 Bi-Te-Sb계 분말의 열전특성에 관한 연구)

  • Yu Ji-Hun;Bae Seung-Chul;Ha Gook-Hyun;Kim Byoung-Kee;Lee Gil-Gun
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.387-392
    • /
    • 2005
  • The p-type semiconductor $Bi_2Te_3-Sb_2Te_3$ thermoelectric materials were fabricated by melting, milling and sintering process and their thermoelectric properties were characterized. The compound materials were ball-milled with milling time and the powders were sintered by spark plasma sintering process. The ball milled powders had equiaxial shape and approedmately $1\~3{\mu}m$ in size. The figure of meritz of sintered thermoelectric materials decreased with milling time because of lowered electrical resistivity. The thermoelectric properties of $Bi_2Te_3-Sb_2Te_3$ materials have been discussed in terms of electrical property with ball mill process.

Performance of the heat flux sensor using thermoelectric semiconductor material (半導體 熱電材料를 利용한 熱流束 測定 센서의 性能)

  • 황동원;정평석;주해호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.622-629
    • /
    • 1988
  • In order to improve the sensitivity of the wafer type heat flux sensor, some heat flux sensors were manufactured and examined by using thermoelectric semiconductor material (bismuth telluride) whose Seebck coefficient is much larger than those of metallic thermocouple materials. Because the thermoelectric element cannot be bended or welded, a peculiar sensor structure and manufacturing process were designed. As a result, it is revealed that the characteristic sensitivity of the manufactured sensor is about 10 times larger than that of marketed sensor even though there are some troubles in stiffness for reciprocal use. If we make this kind of sensors smaller and thinner, it will be a useful method to measure the local heat flux from the surface of complex configuration.

Determination of the Thermolelectric Properties of NaxCo2O4 by Controlling the Concentration of Na and Additive (NaxCo2O4의 열전특성에 미치는 Na 함량변화와 첨가제의 효과)

  • Choi, Soon-Mok;Jeong, Seong-Min;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.689-694
    • /
    • 2009
  • Layer-structured $Na_xCo_2O_4$ was synthesized from $Na_2CO_3\;and\;Co_3O_4$ powders. The chemical concentrations of Na and additive were controlled to enhance the thermoelectric properties over the temperature range from 400 K to 1,150 K. As a result, we obtained the maximum thermoelectric properties at a single phase region with Na content of x=1.5. When Na content was smaller than x=1.5, the thermoelectric properties was low due to formation of second phases of CoO and other oxides. Additionally, Mn was doped to improve thermoelectric properties by means of decreasing thermal conductivity. The results showed that the concentrations of both Na and Mn are all governing factors to determine the thermoelectric properties of $Na_xCo_2O_4$ system.

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

A Study for Adopting the Temperature Control Unit on Memory Device Tester Based on Principle of Thermoelectric Semiconductor (열전소자 원리를 이용한 부품 Tester용 온도공급 장치 연구 (메모리 Device Tester용 온도제어장치 도입을 위한 연구))

  • Kim, Sun-Ju;Hong, Chul-Ho;Shin, Dong-Uk;Seo, Seong-Bum;Lee, Moo-Jea
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.414-416
    • /
    • 2003
  • As environmental conditions for memory products are increasingly high speed/high density, adopting diverse system configuration, it's more and more difficult for current component tester to adopt the actual condition of field application. If system test screening is realized in component level, test coverage failure can be made more secured in the initial stage, evaluation cost can be reduced and the effectiveness of investment for the facility can be maximized. Based on the above background, component automatic system tester was developed and showed off satisfactory results per each memory device family. In this paper, component quality stabilization strategy and cost saving for tester investment through future Quality monitoring and application to mass production will be presented.

  • PDF

Implementation of Single-Wire Communication Protocol for 3D IC Thermal Management Systems using a Thin Film Thermoelectric Cooler

  • Kim, Nam-Jae;Lee, Hyun-Ju;Kim, Shi-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.18-23
    • /
    • 2012
  • We propose and implement a single-wire communication protocol for thermal management systems using thin film thermoelectric modules for 3D IC cooling. The proposed single-wire communication protocol connects the temperature sensors, located near hot spots, to measure the local temperature of the chip. A unique ID number identifying the location of each hot spot is assigned to each temperature sensor. The prototype chip was fabricated by a $0.13{\mu}m$ CMOS MPW process, and the operation of the chip is verified.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.