• Title/Summary/Keyword: Thermoelectric generator

Search Result 79, Processing Time 0.032 seconds

Experimental Study on the Optimal Heat Exchanger of Thermoelectric Generation System for Industrial and Automobile Waste Heat Recovery (차량 및 산업설비 폐열회수용 열전발전시스템의 최적 열교환 시스템에 관한 실험적 연구)

  • Chung, Jae-Hoon;Kim, Woo-Chul;Lee, Jin-Ho;Yu, Tae-U.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.460-463
    • /
    • 2008
  • A large part of the overall industrial energy is dissipated as waste heat despite of much development in the utilization of thermal energy. A mean efficiency is reported to be only around 30 to 35%. The existing waste heat recovery technology has reached its limit and consequently, the development of a new technology is necessary. Improving efficiency using thermoelectric technology has recently come into the spotlight because of its unique way to recover thermal energy. In fact, thermoelectric generator directly converts thermal energy into electric energy by a solid state without any moving parts. Futhermore remarkable improvement in the thermoelectric energy conversion efficiency has been achieved. In this study, a thermoelectric generator was made using commercialized thermoelectric modules. With thermoelectric modules attached on a duct surface, hot air was blown into the duct using a hot air blower. On the other side of the module, a water jacket was attached to cool the module. With different air inlet temperatures and water flowrates, the electrical power of the thermoelectric generator was measured.

  • PDF

A Study for Thermoelectric Generator System And Caused Low Thermoelectric Power (열전발전량에 영향을 미치는 요인과 최적의 열전발전시스템에 관한연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Lim, Jung-Min;Park, Sang-Jin;Kim, Tae-Gon;Kim, Young-Gu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.68-74
    • /
    • 2008
  • This paper describes the causes and effects that have influence on thermoelectric generation. If heat transfer is unequal to thermoelectric modules, we could not get the maximum thermoelectric power. So, by experiment, we analysed the differences of power generation according to the state of the contact between thermoelectric module and heat source. And with the variation of heat transfer area, the generated power was analysed also. Using the experimental results we proposed a thermoelectric generation system.

  • PDF

Performance of Thermoelectric Power Generator with Various Thermal Conditions (열전소자의 열적조건 변화에 따른 발전 특성)

  • Han, Hun-Sik;Kim, Myung-Kee;Um, Suk-Kee;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.165-170
    • /
    • 2010
  • Experiments have been performed to investigate the key parameters determining the performance of thermoelectric power generation. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of thermoelectric generator. However, the effect of the hot side temperature under the identical temperature difference on the overall performance of a thermoelectric generator is meager. The conversion efficiency defined as the ratio of the power generated to the heat absorbed at the hot side increases with the temperature difference. The behavior of the thermoelectric generator is shown to be consistent with the theoretical analysis. The optimum current giving the maximum conversion efficiency and the maximum conversion efficiency are linearly increased with the temperature difference.

Comparisons on Maximum Power Point Tracking Control of a Thermoelectric Generator on Vehicles (차량 적용을 위한 열전 소자 최대 전력 추종 제어 비교)

  • Jang, Yohan;Choung, Seunghoon;Bae, Sungwoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.159-166
    • /
    • 2021
  • This study compares the maximum power point tracking (MPPT) control methods of a thermoelectric generator on vehicles. The researchers conduct comparisons on five different MPPT methods, including a fractional open circuit voltage method, a perturbation and observation (P&O) method, an incremental conductance method, a linear extrapolation-based MPPT (LEMPPT) method, and a LEMPPT/P&O hybrid method. These five MPPT methods are theoretically analyzed in detail, and the comparisons are conducted through MATLAB/Simulink simulation results. The comparison outcomes reveal that linear MPPT methods, including LEMPPT and LEMPPT/P&O hybrid methods, are more suitable for a thermoelectric generator on vehicles than the other MPPT methods examined in this work.

Characteristics of peltier module for thermoelectric generator (열전발전용 Peltier module의 특성 측정)

  • Woo, B.C.;Lee, H.W.;Lee, D.Y.;Kim, B.S.;Schmatok, Schmatok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1552-1554
    • /
    • 1998
  • TEC(Thermoelectric conversion) is direct conversion method between thermal energy and electric energy. We studied on the mechanical, electrical and thermal properties of thermoelectric module, made experimental thermoelectric generator with BiTe material and manufactured module tester for electric-thermal energy conversion.

  • PDF

Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles (자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices (MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작)

  • Kwon, Sung-Do;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.

Development of 100W thermoelectric power generation module (100W급 열전발전 모듈 기술 개발)

  • Moon, Jihong;Hwang, Jungho;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.321-322
    • /
    • 2015
  • Thermoelectric power generation has emerged as a promising alternative technology because it offers a potential application in the direct conversion of waste heat into electric energy. The performance of thermoelectric power generator depends on thermoelectric materials and thermoelectric power module designs. The main objective of this study is to design a 100W thermoelectric generation (TEG) module and to get optimal operating conditions of the module. The design and performance of the TEG module will be presented.

  • PDF

Stretchable Carbon Nanotube Composite Clays with Electrical Enhancers for Thermoelectric Energy Harvesting E-Skin Patches

  • Tae Uk Nam;Ngoc Thanh Phuong Vo;Jun Su Kim;Min Woo Jeong;Kyu Ho Jung;Alifone Firadaus Nurwicaksono Adi;Jin Young Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Electronic skin (e-skin), devices that are mounted on or attached to human skin, have advanced in recent times. Yet, the development of a power supply for e-skin remains a challenge. A stretchable thermoelectric generator is a promising power supply for the e-skin patches. It is a safe and semi-permanent energy harvesting device that uses body heat for generating power. Carbon nanotube (CNT) clays are used in energy-harvesting e-skin patches. In this study, we report improved thermoelectric performance of CNT clays by using chemical doping and physical blending of thermoelectric enhancers. The n-type and p-type thermoelectric enhancers increase electrical conductivity, leading to increased power factors of the thermoelectric CNT clays. The blend of CNT clays and enhancers is intrinsically stretchable up to 50% while maintaining its thermoelectric property.

Development of A Floating Solar Thermoelectric Generator Using A Dome Shaped Fresnel Lens for Ocean Application

  • Seong-Hoon Kim;Jeung-Sang Go
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.1001-1010
    • /
    • 2023
  • To solve the problem that photovoltaic panels can not harvest electrical energy at a cloudy day and night, a floating solar thermoelectric generator (FSTEG, hereafter) is studied. The FSTEG is consisted of a dome shaped Fresnel lens to condense solar energy, a thermoelectric module connected with a heat sink to keep temperature difference, a floating system simulating a wavy ocean and an electrical circuit for energy storage. The dome shaped Fresnel lens was designed to have 29 prisms and its optical performance was evaluated outdoors under natural sunlight. Four thermoelectric modules were electrically connected and its performance was evaluated. The generated energy w as stored in a Li-ion battery by using a DC-DC step-up converter. For the application of ocean environment, the FSTEG was covered by the dome shaped Fresnel lens and sealed to float in a water-filled reservoir. The harvested energy shows a potential and a method that the FSTEG is suitable for the energy generation in the ocean environment.