• Title/Summary/Keyword: Thermoelectric device

Search Result 104, Processing Time 0.033 seconds

Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body

  • Cho, Han Ki;Kim, Da Hye;Sin, Hye Sun;Cho, Churl-Hee;Han, Seungwoo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.518-524
    • /
    • 2017
  • A flexible thermoelectric device using body heat has drawn attention as a power source for wearable devices. In this study, thermoelectric thick films were fabricated by cold pressing method using p-type antimony telluride and n-type bismuth telluride powders in accordance with specific loads. Thermoelectric thick films were denser and improved the electrical and thermoelectric properties while increasing the load of the cold pressing. The thickness of the specimen can be controlled by the amount of material; specimens were approximately 700 um in thickness. Flexible thermoelectric devices were manufactured by using the thermoelectric thick films on PI (Polyimide) substrate. The process is cheap, efficient, easy and scalable. Evaluation of power generation performance and flexibility on the fabricated flexible thermoelectric device was carried out. The flexible thermoelectric device has great flexibility and good performance and can be applied to wearable electronics as a power source.

A Comparative Analysis of Thermal Properties of COB LED based on Thermoelectric Device Structure (열전소자 구조에 따른 COB LED의 방열 성능 비교 분석)

  • Kim, Hyo-Jun;Kang, Eun-Yeong;Im, Seong-Bin;Hoang, Geun-Chang;Kim, Yong-Kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.189-194
    • /
    • 2015
  • In this study, the heat radiation performance of COB LED according to the structure of thermoelectric device were compared. Thermoelectric device of the sheet copper structure and ceramic structure were used for bonding with the heating part of the COB LED. The temperature distribution in the bonding part of the thermoelectric device of COB LED was measured with a contact-type thermometer. The temperature variation of the thermoelectric device was measured by inputting the currents of 0.1A, 0.3A, 0.5A, and 0.7A. When 0.7A was applied, the temperature of the bonding part where there was a heat aggregation phenomenon of the COB LED was $59^{\circ}C$ for thermoelectric device of the sheet copper structure and $67^{\circ}C$ for the thermoelectric device of the ceramic structure. Therefore, the sheet copper thermoelectric device whose temperature was lower by $9^{\circ}C$ showed better heat radiation performance than those of the ceramic structure.

A Fundamental Study on the Composition for the Hybrid Dehumidification System Using Thermoelectric Device (열전소자를 활용한 하이브리드 제습시스템의 구성에 관한 기초적 연구)

  • Ryu, Seong-Ryong;Yeom, Ho-Jin;Lee, Hyun-Jae;Cho, Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.618-626
    • /
    • 2018
  • In this paper, the hybrid dehumidification system using thermoelectric device is based on the idea of utilizing waste heat from the heat dissipation side of thermoelectric device as a heat source to regenerate chemical desiccant. We would like to apply this system to spaces required dehumidification due to continuous moisture generation or local high humidity in the houses. And, we want to confirm the possibility of developing the hybrid dehumidification system that combines passive dehumidification using chemical desiccant with active dehumidification using thermoelectric device.

Design of P-N Junction Type Thin-Film Thermoelectric Device and their Device Characteristics (P-N Junction Type 박막열전소자제작 및 특성)

  • Kwon, Sung-Do;Song, Hyun-Cheol;Jeong, Dae-Yong;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.142-142
    • /
    • 2007
  • Micro thermoelectric generator has been attractive for the alternative power source to operate the wireless sensor node. In this paper, we designed the column-type micro thermoelectric device and their device characteristics were measured. n-type Bi2Te3 and p-type BiSbTe3 thermoelectric thin films were grown on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) and they were pattemed. The height of thermoelectric film were controlled by the deposition time, temperature and MO-x gas pressure. Seebeck coefficient was measured at room temperature and hole concentration and electrical resistivity of thermoelectric film were also characterized.

  • PDF

Hot and cool temperature control of the car-seat utilizing the thermoelectric device

  • Choi, Hyung-Sik;Kim, You-Shin;Woo, Jung-Jae;Jeon, Chang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1816-1821
    • /
    • 2003
  • The thermoelectric device was applied to a car-seat to control the hot temperature in summer and cold temperature in the winter. The characteristics of the device used to a car-seat were analyzed. The air conditioning structure was designed to regulate the hot side of the thermoelectric device. To control the temperature of the car-seat, a robust control algorithm based on the sliding mode control was applied, and a controller using one-chip microprocessor was developed. The performance of the proposed controller through experiments was shown.

  • PDF

Hot and Cool Temperature Control of the Car-Seat Utilizing the Thermoelectric Device (열전소자를 이용한 카시트의 냉ㆍ난방 제어)

  • Choi, Hyeung-Sik;Kim, You-Shin;Jeon, hang-Hoon;Yun, Sang-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.518-525
    • /
    • 2004
  • The thermoelectric device was applied to a car seat to control the hot temperature in the summer and cold temperature in the winter. The characteristics of the device used to a car seat were analyzed. The air conditioning structure was designed to regulate the hot side of the thermoelectric device. To control the temperature of the car seat, a robust control algorithm based on the sliding mode control was applied, and a controller using one-chip microprocessor was developed. The performance of the proposed controller through experiments was shown.

Study on Metalizing 2% Na-PbTe for Thermoelectric Device (고효율 열전소재 2%Na-PbTe 의 소자화에 관한 연구)

  • Kim, Hoon;Kang, Chanyoung;Hwang, Junphil;Kim, Woochul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2014
  • Heat emission from the laser diode used in the optical disc drive and the defects from the increased temperature at the system have attracted attentions from the field of the information storage device. Thermoelectric refrigerator is one of the fine solutions to solve these thermal problems. The refrigeration performance of thermoelectric device is dependent on the thermoelectric material's figure-of-merit. Meanwhile, high electrical contact resistivity between metal electrode and p- and n-type thermoelectric materials in the device would lead increased total electrical resistance resulting in the degeneracy in performance. This paper represents the manufacturing process of the PbTe-based material which has one of the highest figure-of-merit at medium-high-temperature, ~ 600K to 900 K, and the nickel contact layer for reduced electrical contact resistance at once, and the results showing the decent contact structure and figure-of-merit even after the long-term operation environment.

Development of Cooling/Warming System Using Thermoelectric Device (열전소자를 이용한 냉·온장시스템 개발)

  • Kim, Kee-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.131-136
    • /
    • 2009
  • The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely when a voltage is applied to it, it creates a temperature difference. This effect is used in this paper to cool objects or to heat them. A cooling/warming system with thermoelectric device is introduced and controlled with PC and LabVIEW.

  • PDF

Analysis of the Thermoelectric Devices' Power Generation Performance for Utilizing the Waste Heat of LED Tunnel Lighting Module (LED터널등 모듈의 폐열활용을 위한 열전소자의 발전 성능 분석)

  • Jeong, Ji-Young;Her, In-Sung;Lee, Se-Il;Kim, Myeong-Ho;Yu, Young Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, we propose the LED(Light-Emitting-Diode) emergency lighting in a tunnel by using the thermoelectric devices. To achieve high generated power, thermoelectric device should be have high Seebeck coefficient and small contact area. Also, we reveal that a moderate heatsink required for high generated power. From the waste heat of LED tunnel lighting module (25W), the generated power was 0.062W by thermoelectric device, and it could illuminate for 1hour after charge the battery of emergency lighting during about 101hours.

MOCVD를 이용한 $BiSbTe_3$ 박막성장 및 열전소자 제작

  • Kwon, Sung-Do;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.425-425
    • /
    • 2008
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3mW is obtained at the temperature difference of 45K. We provide a promising approach for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which can employ nanostructures for high thermoelectric properties.

  • PDF