• 제목/요약/키워드: Thermoelectric cooling

검색결과 133건 처리시간 0.089초

펠티어 냉난방시스템 최적화 기술에 관한 연구 (A Study on Optimization Development of Peltier Air-conditioning System)

  • 박상훈;정수진;박영우;박유경;송범중
    • 융복합기술연구소 논문집
    • /
    • 제3권1호
    • /
    • pp.19-23
    • /
    • 2013
  • This study is concerned with air-conditioning system in use of thermoelectric device. It is introduced that the well designed structures for better cooling & heating performance with high efficiency. And also it is performed that the system performance test of four types trial products for the use of hybrid commercial vehicle. System performance is affected by many component parts, especially heat sink design & power control method. It is applied that dual extrusive fin tube with buffer zone for the effective radiating of circulating liquid in tube. And also it is applied that power supply method with constant-current system. It is attained that system cooling capacity is 1.2kW, COP is 0.95.

  • PDF

Facile synthesis of nanostructured n-type SiGe alloys with enhanced thermoelectric performance using rapid solidification employing melt spinning followed by spark plasma sintering

  • Vishwakarma, Avinash;Bathula, Sivaiah;Chauhan, Nagendra S.;Bhardwaj, Ruchi;Gahtori, Bhasker;Srivastava, Avanish K.;Dhar, Ajay
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1540-1545
    • /
    • 2018
  • SiGe alloy is widely used thermoelectric materials for high temperature thermoelectric generator applications. However, its high thermoelectric performance has been thus far realized only in alloys synthesized employing mechanical alloying techniques, which are time-consuming and employ several materials processing steps. In the current study, for the first time, we report an enhanced thermoelectric figure-of-merit (ZT) ~ 1.1 at $900^{\circ}C$ in ntype $Si_{80}Ge_{20}$ nano-alloys, synthesized using a facile and up-scalable methodology consisting of rapid solidification at high optimized cooling rate ${\sim}3.4{\times}10^7K/s$, employing melt spinning followed by spark plasma sintering of the resulting nano-crystalline melt-spun ribbons. This enhancement in ZT > 20% over its bulk counterpart, owes its origin to the nano-crystalline microstructure formed at high cooling rates, which results in crystallite size ~7 nm leading to high density of grain boundaries, which scatter heat-carrying phonons. This abundant scattering resulted in a very low thermal conductivity ${\sim}2.1Wm^{-1}K^{-1}$, which corresponds to ~50% reduction over its bulk counterpart and is amongst the lowest reported thus far in n-type SiGe alloys. The synthesized samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy, based on which the enhancement in their thermoelectric performance has been discussed.

열전소자와 PF Type 진동형 히트파이프를 이용한 냉.난방기에 관한 연구 (The Experimental Study on Cooling-Heating System Using Thermoelectric Module and Parallel Flow Type Oscillating Heat Pipe)

  • 김종수;임용빈;조원호
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.741-747
    • /
    • 2004
  • The purpose of this study was to develop a cooler/heater using a thermoelectric module combined with a parallel flow type oscillating heat pipe with R-142b as a work ing fluid. The experiment was performed for 16 thermoelectric modules (6 A/15 V, size: 40${\times}$40${\times}$4 mm), varying design parameters of the heat pipe (inclination angle, working fluid charging ratio, etc) . Experimental results indicate that the optimum charging ratio and the inclination angle of the parallel flow type oscillating heat pipe were 30% by volume and 30%, respectively. The maximum cooler/heater capacity were 479W (COP : 0.47) and 630W (COP : 0.9), respectively.

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

펠티어 소자를 이용한 알루미늄 판의 온도 제어 (Temperature Control of the Aluminum Plate using Peltier Element)

  • 전원석;방두열;최광훈;권대규;김남균;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.764-767
    • /
    • 2004
  • This paper present the temperature control of aluminum plate using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is asserted to Peltier element, it absorbs heat from low temperature side and emits to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with ON/OFF control scheme and fan ON/OFF. As the result of experiments, it is proper to act fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 100sec to increase to 7$0^{\circ}C$ and drop to 35$^{\circ}C$ of aluminium plate temperature and about 90sec to increase to 7$0^{\circ}C$ and drop to 4$0^{\circ}C$ in ambient temperature 3$0^{\circ}C$ while fan is on only in cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier element to heating and cooling.

  • PDF

전자냉동 김치독의 열유동 및 성능 특성 (Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar)

  • 송규석;김경환;이승철;고철균;이재헌;오명도
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

PWM 전류제어와 펠티어 소자를 이용한 알루미늄 판의 온도 제어 (Temperature Control of the Aluminum Plate with Pottier Module by PWM Current Control)

  • 방두열;권대규;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.897-900
    • /
    • 2005
  • This paper presents temperature control of aluminum plate using Peltier module. As one of the thermoelectric effect, Peltier effect is heat pumping phenomena by electric energy. So if current is charged to Peltier module, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier module is used to control the temperature of small aluminum plate with heating and cooling ability of Peltier module with current control and fan On/OFF control. And current control of Peltier module was accomplished by PWM method. As a results of experiments, it takes about 125sec to control temperature of aluminium plate between $30^{\circ}C\;and\;70^{\circ}C$ and about 70sec between $40^{\circ}C\;and\;60^{\circ}C$, in ambient temperature $29^{\circ}C$ while operating cooling fan only while cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

  • PDF

건식공정 바텀애시 경량 잔골재를 사용한 내화모르타르의 특성 (Properties of Fireproof Mortar Using Lightweight Fine Aggregate Using Air Cooling Process Bottom Ash)

  • 김명훈;남궁연
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.225-226
    • /
    • 2016
  • Bottom ash generated in thermoelectric power plants could be used as substitutional fine aggregate such as pearlite of fireproof mortar due to its lightweight and porosity. Development of substitutional materials is necessary because pearlite has several problems such as production of carbon dioxide during manufacturing process and high price. This study is to confirm the possibility of air cooling process bottom ash for fireproof mortar as substitutional material of pearlite through basic experiment.

  • PDF

3D Multi-chip packaging 을 위한 열 설계 및 열전 냉각 성능 시뮬레이션 (Simulation of thermal design and thermoelectric cooling for 3D Multi-chip packaging)

  • 장봉균;현승민;김재현;이학주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2009년도 추계학술대회 논문집
    • /
    • pp.711-712
    • /
    • 2009
  • MCP 기술을 이용한 반도체 칩에서 문제가 되는 방열문제를 해결하기 위한 방법으로 열전 냉각 소자를 이용하여 열을 방출 시키는 방법에 관하여 연구를 수행하였다. 시뮬레이션을 통하여 열전 소자가 작동할 때, 흡수하는 열량을 계산할 수 있었으며, 열전 소자의 냉각 성능도 평가 할 수 있었다. 이러한 열 해석 및 열전 해석을 통하여 적층 구조의 MCP 모듈을 위한 열 설계 및 효율적 냉각을 가능하게 할 수 있을 것이다.

  • PDF