• Title/Summary/Keyword: Thermoelectric Device

Search Result 104, Processing Time 0.024 seconds

A Study on the Application of Thermoelectric Module to the Electric Telecommunication Equipment Cooling (열전소자를 이용한 전자 통신장비 냉각에 관한 연구)

  • Kim, Jong-Soo;Im, Yong-Bin;Kong, Sang-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • Cooling technology has been a vital prerequisite for the rapid, if not explosive, growth of the electronic equipment industry. This has been especially true during the last 20 years with the advent of intergrated circuit chips and their applications in computers and related electronic products. The purpose of this study is to develop a telecommunication equipment cooling system using a thermoelectric module combined with cooling fan. Thermoelectric module is a device that can perform cooling only by input of electric power. In the present study, the cooling package using the thermoeletric module has been developed to improve the thermal performance. The cooling characteristics of the electronic chip was placed into the subrack and it can be rapidly assembled or disassembled in the equipment rack. As a preliminary experiment, the cooling performances between a conventional way using a cooling fin and a proposed method applying the thermoelectric module was comosed and analyzyed. The cooling performance at a simulated electronic component packaging a thermomodule operated well.

Thermoelectric Seebeck and Peltier effects of single walled carbon nanotube quantum dot nanodevice

  • El-Demsisy, H.A.;Asham, M.D.;Louis, D.S.;Phillips, A.H.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.8-15
    • /
    • 2017
  • The thermoelectric Seebeck and Peltier effects of a single walled carbon nanotube (SWCNT) quantum dot nanodevice are investigated, taking into consideration a certain value of applied tensile strain and induced ac-field with frequency in the terahertz (THz) range. This device is modeled as a SWCNT quantum dot connected to metallic leads. These two metallic leads operate as a source and a drain. In this three-terminal device, the conducting substance is the gate electrode. Another metallic gate is used to govern the electrostatics and the switching of the carbon nanotube channel. The substances at the carbon nanotube quantum dot/metal contact are controlled by the back gate. Results show that both the Seebeck and Peltier coefficients have random oscillation as a function of gate voltage in the Coulomb blockade regime for all types of SWCNT quantum dots. Also, the values of both the Seebeck and Peltier coefficients are enhanced, mainly due to the induced tensile strain. Results show that the three types of SWCNT quantum dot are good thermoelectric nanodevices for energy harvesting (Seebeck effect) and good coolers for nanoelectronic devices (Peltier effect).

Design of a Thermal Energy Harvesting Circuit With MPPT Control (MPPT 기능을 갖는 열전 에너지 하베스팅 회로)

  • Kim, Su-jin;Park, Kum-young;Yoon, Eun-jung;Oh, Won-seok;Yu, chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.255-258
    • /
    • 2012
  • In this paper, with a thermoelectric device using the seebeck effect which generates electromotive force by temperature difference generates electric energy an energy harvesting circuit using MPPT(Maximun Power Point Traking) control is designed. After periodically sampling the open voltage of the thermoelectric device, the 1/2 voltage of open voltage which in a maximum power point is maintained through MPPT control circuit and harvested energy from thermoelectric device is delivered to load through a switch. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process and the chip area excluding pads is $1168.7{\mu}m{\times}541.3{\mu}m$.

  • PDF

A NOx gas sensor based on thennopile and embedded tin oxide catalyst (Thermopile과 삽입된 $SnO_2$ catalyst를 이용한 NOx 센서)

  • Lee, Chung-Il;Yoon, Seung-Il;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1829-1832
    • /
    • 2008
  • This paper reports a novel gas sensing method by using a thermoelectric device, thermopile in this case, with an embedded tin oxide catalyst. By using a thin catalyst film, the response time and recovery time were remarkably improved. The fabricated gas sensor was characterized through detecting NOx gas with various concentrations.

  • PDF

Fabrication of NTC thermistor embedded Miniature Thermoelectric Cooling Module for Temperature Control (NTC 써미스터가 내장된 항온 제어용 소형 열전 냉각 모듈 제조)

  • Park J. W.;Choi J. C.;Hwang C. W.;Choi S. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.83-89
    • /
    • 2004
  • NTC thermistor embedded miniature thermoelectric module was fabricated for the precise temperature control of optical communication device such as laser diode (LD). The miniature thermoelectric module ($7.2 mm{\times}9 mm{\times}2.2 mm$) consists of 21 BiTe thermoelectric couples, the operating temperature is precisely controlled by embedded thermistor with quick response. The figure-of-merit (Z), maximum temperature difference (${\Delta}T_{max}$), maximum cooling capacity ($Q_{max}$) of the miniature thermoelectric module were $2.5{\times}10^{-3}$/K, 72 K, 2.2 W respectively and temperature could be controlled in range of ${\pm}0.1^{\circ}C$ accuracy in air. The fabricated miniature thermoelectric module is suitable for applications of the optical communication packaging.

  • PDF

Stretchable Characteristics and Power Generation Properties of a Stretchable Thermoelectric Module Filled with PDMS (PDMS로 충진된 신축열전모듈의 신축특성과 발전특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2019
  • A stretchable thermoelectric module consisting of 5 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs was processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its stretchable characteristics and power generation properties were measured. The integrity of the module was kept well even after 10 strain cycles ranging from 0 to 0.1. With increasing the tensile strain to 0.2, the module circuitry became open because of joint failure between Cu electrodes and thermoelectric legs. The stretchable thermoelectric module exhibited an open circuit voltage of 4.6 mV with a temperature difference of 2.2K across both ends of thermoelectric legs, and changes in its open circuit voltage were below 5% for tensile strains of 0~0.1. Being elongated for a strain of 0.1, it exhibited the maximum output power of 18.5 ㎼ with the temperature difference of 2.2K across its both ends.

A Study on Optimization Development of Peltier Air-conditioning System (펠티어 냉난방시스템 최적화 기술에 관한 연구)

  • Park, Sanghoon;Jeong, Soojin;Park, Youngwoo;Park, Ukyung;Song, Beomjung
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • This study is concerned with air-conditioning system in use of thermoelectric device. It is introduced that the well designed structures for better cooling & heating performance with high efficiency. And also it is performed that the system performance test of four types trial products for the use of hybrid commercial vehicle. System performance is affected by many component parts, especially heat sink design & power control method. It is applied that dual extrusive fin tube with buffer zone for the effective radiating of circulating liquid in tube. And also it is applied that power supply method with constant-current system. It is attained that system cooling capacity is 1.2kW, COP is 0.95.

  • PDF

An analytical model considering temperature effects in self-signal processing infrared detectors (자기신호처리 적외선 감지소자의 온도효과를 고려한 해석적 모델)

  • 조병섭;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.124-133
    • /
    • 1995
  • A theoretical self-consistent thermoelectric model has been developed for optimal thermal design in the self-signal processing infraed detectors. The model is achived by employing the coupled thermoelectric equation which allows which allows the simultaneous investigation of the termal and electrical aspects of device behavior. The thermal limitation of detectivity and responsivity are determined by the enegy gap, carrier concentration, lifetime, and mobility as a function of the temperature. The calculated results indicate that the detectivity is decreased at bias fields above about 50 V/cm, because the performence is limiting by temperature when the bias voltage reached the level associated with Joule heating. It has been also found that the improvement in the mid-band modulation transfer function(MTF) may be restricted by increasing the bias fields. Further, the important paramerers in the thermal optimization of SPIR detector, such as temperature in the device, ambipolar velocity, element thickness and length, are also considered. The analytical study provides a mathematical basis for optimal design of such a photoconductive IR detector and the agreement between the experimental and theoretical results are seen to be good.

  • PDF

Silicon Thermoelectric Device Technology (실리콘 열전소자 기술)

  • Jang, Moongyu
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.21-24
    • /
    • 2014
  • Thermolectric devices could convert temperature gradient into electricity (Seebeck effect) and electric power into temperature gradient across the themoelectric element (Peltier effect). $Bi_2Te_3$ has been widely used as thermoelectric material for more than 40 years, due to the superior thermoelctric characteristics. However, Bi and Te materials are predicted to face supply shortage, giving strong necessity for the development of new thermoelctric materials. Based on the theoretical prediction, nanostructure are expected to give dramatic enhnacement of thermoelectirc characteristics by controlling phonon propagation. Thus, silicon, which had been considered as improper material for thermoelectricity, is now being considered as strong cadidate material for thermoelectricity. This review will focus on the nanotechnology applied research activities in silicon as thermoelectric materials.

Implementation of Optimal Temperature Controller for Thermoelectric Device-based Heating System Using Genetic Algorithm (유전알고리즘을 이용한 열전소지 기반 히팅 시스템의 최적 온도 제어기 구현)

  • Jung-Shik Kong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.41-47
    • /
    • 2023
  • This paper presents the development of a controller that can control the temperature of an heating system based on a thermoelectric module. Temperature controller using Peltier has various external factors such as external temperature, characteristics of an aluminum plate, installation location of temperature sensors, and combination method between the aluminum plate and heating element. Therefore, it is difficult to apply the simulation and simulation results of heating system using Peltier at control algorithm. In general, almost temperature controller is using PID algorithm that finds control gain value heuristically. In this paper, it is proposed mathematical model that explain correlate between the temperature of the heating system and input voltage. And then, optimal parameter of estimated thermal model of the aluminum plate are searched by using genetic algorithm. In addition, based on this estimated model, the optimal PID control gain are inferred using a genetic algorithm. All of the sequence are simulated and verified with proposed real system.