• Title/Summary/Keyword: Thermoelectric Coefficient

Search Result 165, Processing Time 0.022 seconds

Thermoelectric Properties of PbTe Sintered Body Fabricated by Mechanical Alloying Process (기계적합금화 공정에 의해 제조된 PbTe 소결체의 열전특성)

  • 이길근;정해용;이병우
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.110-116
    • /
    • 2001
  • Abstract To investigate the effect of mechanical alloying process to thermoelectric properties of PbTe sintered body, Pb-Te mixed powder with Pb : Te : 1 : 1 composition was mechanically alloyed using tumbler-ball mill. Thermoelectric properties of the sintered body were evaluated by measuring of the Seebeck coefficient and specific electric resistivity from the room temperature to 50$0^{\circ}C$. Sintered body of only mechanically alloyed PbTe powder showed p-type behavior at the room temperature, and occurred type transition from p-type to n-type at about 30$0^{\circ}C$. PbTe sintered body which was fabricated using heat treated powder in $H_2$ atmosphere after mechanical alloying showed stable n-type behavior under 50$0^{\circ}C$. N-type PbTe sintered body fabricated by mechanical alloying process had 4 times higher power factor than that fabricated by the melt-crushing process. Application of a mechanical alloying process to fabricate of n-type PbTe thermoelectric material seemed to be useful to increase the power factor of PbTe sintered body.

  • PDF

Thermoelectric Properties of Vacuum Hot-pressed $Ba_8Al_{16}Si_{30}$ Clathlate

  • Lee, Joo-Ho;Lee, Jung-Il;Kim, Young-Ho;Kim, Il-Ho;Jang, Kyung-Wook;Ur, Soon-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1198-1199
    • /
    • 2006
  • Type I clathrate $Ba_8Al_{16}Si_{30}$ was produced by arc melting and hot pressing and thermoelectric properties were investigated. Negative Seebeck coefficient at all temperatures measured, which means that the majority carriers are electrons. Electrical conductivity decreased by increasing temperature and thermal conductivity was 0.012 W/cmK at room temperature and dimensionless thermoelectric figure of merit (ZT) was 0.01 at 873K.

  • PDF

Thickness and Annealing Effects on the Thermoelectric Properties of N-type $Bi_2Te_{2.4}Se_{0.6}$ Thin Films (N형 $Bi_2Te_{2.4}Se_{0.6}$ 박막의 열전 특성에 미치는 두께 및 열처리 효과)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.153-158
    • /
    • 2005
  • The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties of flash-evaporated n-type $Bi_2Te_{2.4}Se_{0.6}$ thin films. Annealing effects on the electron concentration and mobility were also studied, and their variations were analyzed in conjunction with antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the mean free path was found to be $5120\AA$ Electron mobility was increased by annealing treatment and electron concentration was decreased considerably due to reduction of antisite defects, so that electrical conductivity was decreased and Seebeck coefficient was increased. When annealed at 473k for 1 hour, Seebeck coefficient and electrical conductivity were $-200\;\mu V/k\;and\;510\omega^{-1}cm^{-1}$, respectively. Therefore, the thermoelectric power factor was improved to be $20\times10^{-4}\;W/(mK^2)$.

Thermal Treatment Effect on Thermoelectric Characteristics of Perovskite La0.5Ca0.5MnO3 (페로브스카이트 La0.5Ca0.5MnO3 재료의 열전 특성에 미치는 열처리 효과)

  • Yang, Su-Chul
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.3
    • /
    • pp.55-59
    • /
    • 2017
  • In this study, thermoelectric characteristics of perovskite $La_{0.5}Ca_{0.5}MnO_3$ (LCMO) nanomaterials were investigated by theoretical simulation and experimental analysis. Thermoelectric power factors calculated by DFT simulation were gradually enhanced as increase in annealing temperature. Maximum power factor was obtained with high magnitude of $S^2{\sigma}=566{\mu}W/m{\cdot}K^2$ at 1100 K through a dominant improvement of Seebeck coefficient compared with electrical conductivity. Experimentally, the LCMO nanomaterials were hydrothermally synthesized and then treated by post thermal annealing with temperature variation. X-ray diffraction and SEM analysis illustrated that LCMO exhibited orthorhombic perovskite structures with small grain size of 16~19 nm over 873 K. The results directly confirmed that improvement of crystallinity and decrease of mean grain size given by post thermal annealing lead to enhancements of electrical conductivity and Seebeck coefficient, respectively.

Effect of Oxidation ont he Thermoelectricity of Fe-Si based Materials (Fe-Si계 재료의 열전성에 미치는 산화의 효과)

  • 송태호;최준영;이홍림;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.74-82
    • /
    • 1996
  • Fe-Si based powders prepare by melting the metals in the composition of FeSi2,.Fe0.95Mn0.05Si2 and Fe0.95Co0.05Si0.2 were used as the starting materials together with a commercial FeSi2 powder to study the effect of oxidation on their thermoelectric properties. The powders were heated at 650~80$0^{\circ}C$ in dired air before forming and sintering at 1190 and 120$0^{\circ}C$ in Ar+7%H2. The microstructure and phases of the annealed specimens were observed using the optical microscopty SEM, EDS and XRD. The thermoelectric properties of the specimens were also measured. The temperature at which Seebe다 coefficient showed the maximum value increased with the degree of oxidation. Electrical conductivity showed a tendency to decrease in the oxidized samples regardless of their compositions. Seebeck coefficient of the specimen showed almost the same value even after oxidation which may be explained by the formation of the discontinuous second phases from impurities in the oxidized specimens.

  • PDF

Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands

  • Kim, Hyun-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.325-330
    • /
    • 2019
  • Band convergence is known to be effective in improving thermoelectric performance by increasing the Seebeck coefficient without significantly reducing electrical conductivity. Decoupling of the Seebeck coefficient and electrical conductivity in converged bands is the key requirement. Yet, the degree of decoupling depends on the band parameters of the converging bands. Herein, we report theoretical transport properties of two valence bands as their energy difference changes from 0.25 eV to 0 eV. In order to demonstrate the effect of band parameters in transport, we first conducted calculations for the case where the two bands have the same parameters. Then, we conducted the same calculation by doubling the density-of-states effective mass of one valence band. Given that there are two bands, each band's effective mass was doubled one at a time while the other band's effective mass remained constant. We found that the decoupling was strongest when the bands participating in convergence had the same band parameters.

Thermoelectric Performance Enhancement of Sintered Bi-Te Pellets by Rotary-type Atomic Layer Deposition (로터리형 원자층 증착법을 이용한 Bi-Te계 소결체의 열전 성능 개선)

  • Myeong Jun Jung;Ji Young Park;Su Min Eun;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower κ (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100℃. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.

Thermoelectric Properties of Graphite Nanosheets/Poly(vinylidene fluoride) Composites (Graphite Nanosheets/PVDF 복합체의 열전 성질)

  • Yoon, Ho Dong;Nam, Seungwoong;Tu, Nguyen D.K.;Kim, Daeheum;Kim, Heesuk
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.638-641
    • /
    • 2013
  • GNS/PVDF composites were prepared using graphite nanosheets (GNS) and poly(vinylidene fluoride) (PVDF) for flexible thermoelectric application. We measured the electrical conductivity, thermal conductivity and Seebeck coefficient of GNS/PVDF composites with different contents of GNS and then evaluated the thermoelectric properties of GNS/PVDF composites. The electrical conductivity of GNS/PVDF composites increased from 389 to 1512 S/m with increasing the content of GNS from 10 to 70 wt%. While the electrical conductivity dramatically increased, Seebeck coefficient and thermal conductivity did not show any big difference as the content of GNS increases. In this study, we demonstrated that GNS/PVDF composites improved the thermoelectric properties by decreasing the thermal conductivity due to the phonon scattering at the interfaces between polymer and GNS nanoplatelets.

A Study on the Performance of Thermoelectric Cooling System for Design Parameters of the Cooling Jacket (냉각재킷의 설계인자에 따른 열전냉각장치의 성능에 관한 연구)

  • Park, Sang-Hee;Lee, Jeong-Eun;Kim, Kyoung-Jin;Kim, Dong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.149-156
    • /
    • 2009
  • A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which was attached to the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket were the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The increase in the number of channels for water flow passage inside the cooling jacket also showed significant improvement on the performance of the thermoelectric cooling system such as the cooling capacity and the COP of the refrigeration system.

Low-Temperature Thermoelectric Properties of Zn4Sb3 Prepared by Hot Pressing (열간압축 성형법으로 제조한 Zn4Sb3의 저온 열전특성)

  • Park Jong-Bum;Ur Soon-Chul;Kim Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.435-438
    • /
    • 2005
  • Single phase $Zn_4Sb_3$ with $98.5\%$ of theoretical density was successfully produced by direct hot pressing of elemental powders containing $1.2 at\%$ excess Zn for compensating the evaporation during the process. Temperature dependences of thermoelectric properties were investigated from 4 K to 300 K. Seebeck coefficient, electrical conductivity, thermal conductivity as well as thermoelectric figure of merit showed the discontinuity in variation at 242K, indicating the $\alpha-\beta$, phase transformation. Interestingly, it was found that lattice thermal conductivity by phonons is dominant in total thermal conductivity of $\alpha-\beta$. Therefore, it is expected that thermoelectric properties can be improved by reduction of lattice thermal conductivity inducing lattice scattering centers by doping and solid solution.