• Title/Summary/Keyword: Thermoelastic instability

Search Result 14, Processing Time 0.022 seconds

Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes (비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes (단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

Study on Thermoelastic Instability of Automotive Disc Brakes (자동차용 디스크 브레이크의 열탄성 불안정성에 관한 연구)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.315-322
    • /
    • 2001
  • This paper is focused on the frictionally induced thermoelastic instability (TEI) in automotive disk brakes. This instability leads to the formation of localized high temperature contact regions known as hot spots. This article investigates the themoelastic instability in automotive disk brake systems consisting of a finite thickness layer (disk) and two half-planes (pads) using a perturbation method. The antisymmetric mode involves hot spots located alternately on two sides of the disk. As a result the circumferentially periodic hot spots produce rotor surface distortion and Induce low frequency vibration. Also the effects of system parameters on the critical speed for TEI are investigated.

  • PDF

Transient Thermoelnstic Analysis of Disk Brakes Using Finite Element Method (유한요소법을 이용한 디스크 브레이크의 과도기 열탄성 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In;Cha, Hee-Bum;Kang, Min-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.160-167
    • /
    • 2002
  • The transient thermoelastic analysis of automotive disk brakes with frictional contact is performed by using the finite element method. To analyze the thermoelastic behaviors occurring in disk brakes, the coupled heat conduction and elastic equations are solved. The fully implicit transient scheme is used to improve the computation accuracy at every time step. The numerical results of the thermoelastic behaviors are obtained during the repeated braking condition. The computational results show that the thermoelastic instability(TEI) phenomenon(the growth of non-uniformities in contact pressure) occurs in disk brakes. Also, the effect of material properties on the thermoelastic behaviors is investigated to facilitate the conceptual design of the brake system.

Thermoelastic Instability in Functionally Graded Materials (경사기능재료에서의 열탄성 불안정성)

  • Jang, Yong-Hoon;Ahn, Seong-Ho;Lee, Seung-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.

Structural Design of a Circumferential Friction Disc-brake, Considering Thermoelastic Instability (열탄성 불안정성을 고려한 원주면 마찰형 디스크 브레이크의 구조설계)

  • Song, Byoung-Cheol;Kang, Dong-Heon;Kim, Young-Hee;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.38-46
    • /
    • 2007
  • Weight reduction for an automobile component has been sought to achieve fuel efficiency and energy conservation. In response to this trend, a new disc-brake called the circumferential friction disc-brake is suggested. This paper compares the mechanical performances of a conventional disc-brake and a suggested disc-brake, under the dynamic braking condition. The thermoelastic instability is considered to simulate the test condition. Furthermore, the metamodel using kriging interpolation method is introduced to obtain the optimum design of a suggested circumferential friction disc-brake. The design results obtained by the kriging method are compared with those obtained by the ANSYS.

  • PDF

An Experimental Study of Thermoelastic Instability in Automotive Ventilated Disk Brake (통풍식 자동차 디스크 브레이크의 열탄성 불안정성에 관한 실험적 연구)

  • 조병수;백병준;박복춘;김종환;김완두
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 1997
  • The present study describes an experimental investigation of temperature fluctuations associated with thermal instability. Surface temperatures of brake disk and pad were monitered at various locations in a caliper type brake system during drag braking conditions. It was found that the thermal instability appeared in pad more seriously than in disk. The temperatures at various circumferential positions fluctuate synchronously, whereas the center temperature fluctuates with 180$^{\circ}$ phase difference from the outer and inner radius temperatures. The temperature and amplitude of the temperature perturbations are increased due to the increase of contact area in the center location. It was also found that the thermal instability was dominantly determined by the increase of rotation speed and pressure. And the modification of ventilation path could retard the onset of thermal instability.

Frictionally Excited Thermoelastoplastic instability in sliding contact system (미끄러짐 마찰 접촉하는 시스템에서의 열탄소성 불안정성 연구)

  • Ahn, Seong-Ho;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.144-149
    • /
    • 2008
  • A transient finite element simulation is developed for the two-dimensional stationary elastoplastic layer between sliding layers, to investigate thermoelastoplastic instability(TEPI) due to frictional heating in the material. The analysis will show some differences between the case of thermoelastic instability and TEPI, especially according to the contact pressure above yield stress. A transient behavior of contact pressure is captured to explain the behavior of thermoplasticity of contact with different sliding velocity. The instability of contact pressure in the long range of braking time will be explored to understand the generation mechanism of hot spots.

  • PDF

The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model (솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석)

  • 강상욱;김창진;이대희;김흥섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

Three-dimensional Simulation of Hot spots in Disk Brakes (디스크 브레이크의 적열점에 관한 3차원 시뮬레이션)

  • 이일권;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.211-218
    • /
    • 2000
  • Hot spot behaviors on the disk-pad contact surface during a braking operation have been analyzed for a ventilated disk brake using the finite element method. Hot spots which were studied using a coupled thermal-mechanical analysis technique are influenced by all of the mechanical, thermal, elastic and plastic processes that are involved in braking cycles, but their temperature gradients are most affected by rubbing speeds, braking forces, and design parameters between the disk and the pad. Undesirable hot spots that are generated by local thermoelastic instabilities are intended to be removed by optimized design parameters and material properties. In this study, a three-dimensional numerical method for the demonstration of hot spot behaviors has been applied to the rubbing surfaces between the disk and the pad.

  • PDF