• Title/Summary/Keyword: Thermodynamic simulation

Search Result 216, Processing Time 0.018 seconds

Application of Thermodynamic Models for Analysis on SI Thermochemical Hydrogen Production Process (SI 열화학 수소 생산 공정의 분석을 위한 열역학 모델의 적용)

  • Lee, Jun Kyu;Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.30-34
    • /
    • 2012
  • The SI thermochemical cycle process accomplishes water splitting through distinctive three chemical reactions. We focused on thermodynamic models applicable to the process. Recently, remarkable models based on the assumed ionic species have been developed to describe highly nonideal behavior on the liquid phase reactions. ElecNRTL models with ionic reactions were proposed in order to provide reliable process simulation results for phase equilibrium calculations in Section II and III. In this study, the current thermodynamic models of SI thermochemical cycle process were briefly described and the calculation results of the applied ElecNRTL models for phase equilibrium calculations were illustrated for binary systems.

  • PDF

An investigation of the thermodynamic effect on the response of FG beam on elastic foundation

  • Bouiadjra, Rabbab Bachir;Bachiri, Attia;Benyoucef, Samir;Fahsi, Bouazza;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.115-127
    • /
    • 2020
  • This study presents an analytical approach to investigate the thermodynamic behavior of functionally graded beam resting on elastic foundations. The formulation is based on a refined deformation theory taking into consideration the stretching effect and the type of elastic foundation. The displacement field used in the present refined theory contains undetermined integral forms and involves only three unknowns to derive. The mechanical characteristics of the beam are assumed to be varied across the thickness according to a simple exponential law distribution. The beam is supposed simply supported and therefore the Navier solution is used to derive analytical solution. Verification examples demonstrate that the developed theory is very accurate in describing the response of FG beams subjected to thermodynamic loading. Numerical results are carried out to show the effects of the thermodynamic loading on the response of FG beams resting on elastic foundation.

Investigation of thermodynamic analysis in GaN thick films gtowth (GaN 후막 증착의 열역학적 해석에 관한 연구)

  • 박범진;박진호;신무환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.388-395
    • /
    • 1998
  • This paper reports on a thermodynamic analysis for the GaN thick film growth by vapor phase epitaxy method. The thermodynamic calculation was performed using a chemical stoichiometric algorism. The simulation variables include the growth temperature in a range 400~1500 K, the gas ratios $(GaCl_3)/(GaCl_3+NH_3)$ and $(N_2)/(GaCl_3+NH_3)$. The theoretical calculation predicts that the growth temperature of GaN be in the lower range of 450~750 K than the experimental results. The difference in the growth temperature between the simulation and the experiments indicates that the vapor phase epitaxy of GaN is kinetically limited, presumably, due to the high activation energy of thin film growth.

  • PDF

Molecular Dynamics Free Energy Simulation Study to Rationalize the Relative Activities of PPAR δ Agonists

  • Lee, Woo-Jin;Park, Hwang-Seo;Lee, Sangyoub
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.363-371
    • /
    • 2008
  • As a computational method for the discovery of the effective agonists for PPARd, we address the usefulness of molecular dynamics free energy (MDFE) simulation with explicit solvent in terms of the accuracy and the computing cost. For this purpose, we establish an efficient computational protocol of thermodynamic integration (TI) that is superior to free energy perturbation (FEP) method in parallel computing environment. Using this protocol, the relative binding affinities of GW501516 and its derivatives for PPARd are calculated. The accuracy of our protocol was evaluated in two steps. First, we devise a thermodynamic cycle to calculate the absolute and relative hydration free energies of test molecules. This allows a self-consistent check for the accuracy of the calculation protocol. Second, the calculated relative binding affinities of the selected ligands are compared with experimental IC50 values. The average deviation of the calculated binding free energies from the experimental results amounts at the most to 1 kcal/mol. The computational efficiency of current protocol is also assessed by comparing its execution times with those of the sequential version of the TI protocol. The results show that the calculation can be accelerated by 4 times when compared to the sequential run. Based on the calculations with the parallel computational protocol, a new potential agonist of GW501516 derivative is proposed.

Thermodynamic non-equilibrium and anisotropy in Mars atmosphere entry

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Mars exploration demands aerodynamic computations for a proper design of missions of spacecraft carrying instruments and astronauts to Mars. Both Computational Fluid Dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) method play a key role for this purpose. To the author's knowledge, the altitude separating the fields of applicability of CFD and DSMC in Mars atmosphere entry is not yet clearly defined. The limitations in using DSMC at low altitudes are due to technical limitations of the computer. The limitations in using CFD at high altitudes are due to thermodynamic non-equilibrium. Here, this problem is studied in Mars atmosphere entry, considering the Mars Pathfinder capsule in the altitude interval 40-80 km, by means of a DSMC code. Non-equilibrium is quantified by the relative differences between translational temperature and: rotational (θt-r), vibrational (θt-v), overall (θt-ov) temperatures, anisotropy is quantified by the relative difference between the translational temperature component along x and those along y (θx-y) and along z (θx-z). The results showed that θt-r, θt-v, θx-y, θx-z are almost equivalent. The altitude of 45 km should be the limit altitude for a proper use of a CFD code and the altitude of 40 km should be the limit altitude for a reasonable use of a DSMC code.

Molecular Dynamics Simulation on thermodynamic and Structural Properties of Liquid Hydrocarbons : Normal Alkanes

  • Im, Won-Pil;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.852-856
    • /
    • 1994
  • A series of aliphatic hydrocarbons, methane to hexane in the liquid state, are modeled with the molecular mechanical potential parameters treating all hydrogen degrees of freedom explicitly. Thermodynamic properties (heat capacities and heats of vaporization) are calculated from relatively short (20ps) molecular dynamics trajectories. The liquid state structures are also examined through various radial distribution functions. Molecular dynamics simulations reproduce experimentally measured properties within a few percent errors, thus indicate that the present set of all-hydrogen parameters is suitable for simulating macromolecular systems in bulk.

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • The present article is concerned with the application of the Monte Carlo simulation to electrochemistry of lithium intercalation from the thermodynamic view point. This article first introduced the fundamental concepts of the ensembles, and Ising and lattice gas models in statistical thermodynamics for the Monte Carlo simulation in brief. Finally the Monte Carlo method based upon the lattice gas model was employed to analyse thermodynamics of the lithium intercalation into the transition metal oxides. Especially we dealt with the thermodynamic properties as the electrode potential curve and the partial molar internal energy and entropy of lithium ion in the case of the $LiMn_2O_4$ electrode, and consequently confirmed the utility of the Monte Carlo method in the field of electrochemistry of the lithium intercalation.

Sintering Phenomena and Thermodynamic Analysis in the SiC Whisker-Reinforced Mullite Matrix Ceramic Composites During RF Plasma Sintering

  • Park, Youngsoo;:Michael J. MeNallan
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.231-237
    • /
    • 1996
  • Mullite ceramics can be sintered by rf plasma sintering to densities as high as 97% compared to the theoretical density of the mullite, while SiC whisker-reinforced mullite matrix ceramic composites were not sintered by plasma sintering. Decomposition of mullite occurs in a superficial regins at the outside surface of the specimen by volatilization of SiO at elevated temperature by plasma. SiC whiskers were destroyed, and the matrix was converted to alumina from SiC-whisker reinforced mullite matrix ceramic composites during the plasma sintering. Accelerated volatilization from the SiC whisker in the mullite prevents sintering. The volatile species are mainly SiC and CO gas species. The effects of plasma on mullite and SiC-whisker reinforced mullite matrix composites are interpreted by thermodynamic simulation of the volatile species in the plasma environment. The thermodynamic results show that the decomposition will not occur during hot pressing.

  • PDF

A study on the thermodynamic analysis of combustion characteristics of diesel engine (디이젤機關 燃燒特性의 熱力學的 解析에 관한 硏究)

  • 이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 1986
  • This paper presents the results of investigation, the aim of which was to predict theoretically the processes of thermodynamic cycle of M-combustion chamber type diesel engine. The combustion characteristics in cylinder are evaluated from the energy equation for an thermodynamic system in engine cylinder. In order to predict the combustion pressure in cylinder, the engine is divided in various control volumes. The simulation results of combustion characteristics show that the comparison of computed and measured values brings about the good coincidence.