• Title/Summary/Keyword: Thermodynamic models

Search Result 148, Processing Time 0.025 seconds

Evaluation of Influential Factors of Hydrogen Fueling Protocol by Modeling and Simulation (모델링 및 시뮬레이션을 통한 수소충전 프로토콜 영향인자 평가)

  • CHAE, CHUNGKEUN;KANG, SUYOUN;KIM, HANNA;CHAE, SEUNGBEEN;KIM, YONGGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.513-522
    • /
    • 2019
  • It is not easy to refuel quickly and safely with 70 MPa hydrogen. This is because the temperature in the vehicle tank rises sharply due to Joule-Thomson effect, etc. Thus protocols such as SAE J2601 in the United States and JPEC-S 0003 in Japan were established. However, they have the problem of over-complexity and lack of versatility by setting the preconditions for hot and cold cases and introducing a number of look-up tables. This study was conducted with the ultimate goal of developing new protocols based on complete real-time communication. Thermodynamic models were made and programs were developed for hydrogen refueling simulations. Simulation results confirmed that there are five parameters in the influencing factors of the hydrogen refueling protocol.

Numerical Study for Kerosene/LOx Supercritical Mixing Characteristics of Swirl Injector (동축와류형 분사기의 케로신/액체산소 초임계 혼합특성 수치적 연구)

  • Heo, Jun-Young;Kim, Kuk-Jin;Sung, Hong-Gye;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.103-108
    • /
    • 2011
  • The turbulent mixing of a kerosene/liquid oxygen coaxial swirl injector under supercritical pressures have been numerically investigated. Kerosene surrogate models are proposed for the kerosene thermodynamic properties. Turbulent numerical model is based on LES(Large Eddy Simulation) with real-fluid transport and thermodynamics over the entire pressure range; Soave modification of Redlich-Kwong equation of state, Chung's model for viscosity/conductivity, and Fuller's theorem for diffusivity to take account Takahashi's compressible effect. The effect of operating pressure on thermodynamic properties and mixing dynamics inside an injector and a combustion chamber are investigated. Power spectral densities of pressure fluctuations in the injector under various chamber pressure are analyzed.

  • PDF

Underwater striling engine design with modified one-dimensional model

  • Li, Daijin;Qin, Kan;Luo, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.526-539
    • /
    • 2015
  • Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

Performance Analysis for CO2 System with Sub-cooling loop (과냉 회로를 갖는 이산화탄소 냉동시스템에 대한 성능 해석)

  • Kim, Jin-Man;Ko, Sung-Gyu;Kim, Moo-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.723-728
    • /
    • 2007
  • In order to evaluate the performance of carbon dioxide cycle with a sub-cooling loop. a simulation system was developed to predict the steady state of $CO_2$ trans-critical cycle. Mathematical models are derived to describe the relationships between the system's coefficient of performance and other operating parameters The mathematical models are based entirely on the basic mass and energy conservation law and thermodynamic and transport properties of carbon dioxide A parametric study has been conducted in order to investigate the effect of sub-cooling loop and various operating conditions on the cycle performance. An optimal mass fraction of a refrigerant flowing through sub-cooling cycle existed for the given evaporating temperature, high pressure and air inlet temperature through gas cooler.

Numerical Simulation of Cosmic-Ray Acceleration

  • JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.231-235
    • /
    • 2001
  • Cosmic-ray acceleration, although physically important in many astrophysical contexts, is difficult to incorporate into numerical models,. because it involves microphysics that is generally far from thermodynamic equilibrium, and also because the length and time scales for that physics typically range over many orders of magnitude, reflecting the huge range of particle rigidities that must be represented. The most common accelerator models are stochastic in nature and involve nonequilibrium plasma properties that are also often poorly understood. Still, nature clearly finds a way to produce simple, robust and almost scale-free energy distributions for the cosmic-rays. Their importance has inspired a number of approaches to examining the production and transport of cosmic-ray particles in numerical simulations. I offer here a brief comparison of some of the methods that have been introduced.

  • PDF

A simple procedure to simulate the failure evolution

  • Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.601-612
    • /
    • 1996
  • To simulate the large-scale failure evolution with current computational facilities, a simple approach, that catches the essential feature of failure mechanisms, must be available so that the routine use of failure analysis is feasible. Based on the previous research results, a simple analysis procedure is described in this paper for failure simulation. In this procedure, the evolution of localization is represented by a moving surface of discontinuity, and the transition between continuous and discontinuous failure modes are described via the moving jump forms of conservation laws. As a result, local plasticity and damage models, that are formulated based on thermodynamic restrictions, are still valid without invoking higher order terms, and simple integration schemes can be designed for the rate forms of constitutive models. To resolve localized large deformations and subsequent cracking, an efficient structural solution scheme is given for Static and dynamic problems.

Phosphate sorption to quintinite in aqueous solutions: Kinetic, thermodynamic and equilibrium analyses

  • Kim, Jae-Hyun;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Song-Bae;Lee, Chang-Gu;Lee, Sang-Hyup;Choi, Jae-Woo
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.73-78
    • /
    • 2015
  • The aim of this study was to examine the phosphate (P) removal by quintinite from aqueous solutions. Batch experiments were performed to examine the effects of reaction time, temperature, initial phosphate concentration, initial solution pH and stream water on the phosphate adsorption to quintinite. Kinetic, thermodynamic and equilibrium isotherm models were used to analyze the experimental data. Results showed that the maximum P adsorption capacity was 4.77 mgP/g under given conditions (initial P concentration = 2-20 mgP/L; adsorbent dose = 1.2 g/L; reaction time = 4 hr). Kinetic model analysis showed that the pseudo second-order model was the most suitable for describing the kinetic data. Thermodynamic analysis indicated that phosphate sorption to quintinite increased with increasing temperature from 15 to $45^{\circ}C$, indicating the spontaneous and endothermic nature of sorption process (${\Delta}H^0=487.08\;kJ/mol$; ${\Delta}S^0=1,696.12\;J/(K{\cdot}mol)$; ${\Delta}G^0=-1.67$ to -52.56 kJ/mol). Equilibrium isotherm analysis demonstrated that both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the pH experiments, the phosphate adsorption to quintinite was not varied at pH 3.0-7.1 (1.50-1.55 mgP/g) but decreased considerably at a highly alkaline solution (0.70 mgP/g at pH 11.0). Results also indicated that under given conditions (initial P concentration=2 mgP/L; adsorbent dose=0.8 g/L; reaction time=4 hr), phosphate removal in the stream water (1.88 mgP/g) was lower than that in the synthetic solution (2.07 mgP/g), possibly due to the presence of anions such as (bi)carbonate and sulfate in the stream water.

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon (활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.458-465
    • /
    • 2020
  • Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(III) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(III) - 열역학적 특성을 중심으로)

  • Na, Choon-Ki;Jeong, Jin-Hwa;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study is to evaluate the applicability of adsorption models for understanding the thermodynamic properties of adsorption process. For this study, the adsorption isotherm data of $NO_3$-N ion onto a commercial anion exchange resin obtained at various experimental conditions, i.e. different initial concentrations of adsorbate, different dosages of adsorbent, and different temperatures, were used in calculating the thermodynamic parameters and the adsorption energy of adsorption process. The Gibbs free energy change (${\Delta}G^0$) of adsorption process could be calculated using the Langmuir constant $b_M$ as well as the Sips constant, even though the results were significantly dependant on the experimental conditions. The thermodynamic parameters such as standard enthalpy change (${\Delta}H^0$), standard entropy change (${\Delta}S^0$) and ${\Delta}G^0$ could be calculated by using the experimental data obtained at different temperatures, if the adsorption data well fitted to the Langmuir isotherm model and the plot of ln b versus 1/T gives a straight line. As an alternative, the empirical equilibrium constant(K) defined as $q_e/C_e$ could be used for evaluating the thermodynamic parameters instead of the Langmuir constant. The results from the applications of D-R model and Temkin model to evaluate the adsorption energy suggest that the D-R model is better than Temkin model for describing the experimental data, and the availability of Temkin model is highly limited by the experimental conditions. Although adsorption energies determined using D-R model show significantly different values depending on the experimental conditions, they were sufficient to show that the adsorption of $NO_3$-N onto anion exchange resin is an endothermic process and an ion-exchange process.

The Research about Free Piston Linear Engine Fueled with Hydrogen using Numerical Analysis (수소를 연료로 사용한 프리피스톤 리니어 엔진의 수치해석에 관한 연구)

  • Nguyen, Ba Hung;Oh, Yong-Il;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.162-172
    • /
    • 2012
  • This paper presents a research about free piston linear engine (FPLE) fueled with hydrogen, in which, the numerical models are built to simulate the operation during the full stroke of the engine. Dynamic model, linear alternator model and thermodynamic model are used as the numerical models to predict piston velocity, in-cylinder pressure and electric power of FPLE. The spark timing and air gap length are changed to provide information for the prediction. Beside, the heat transfer problem is also investigated in the paper. The results of research are divided by two parts, including motoring mode and firing mode. The result of motoring mode showed that there is validation between simulation and experiment for volume and pressure in cylinder. For firing mode, by increasing spark timing, the velocity of piston, peak pressure and electric power also increase respectively. Beside, when increasing air gap length, the electric power increases accordingly while the motion of piston is not symmetric. The effect of heat transfer also observed clearly by reducing of the peak pressure, velocity of piston and electric power.