• Title/Summary/Keyword: Thermodynamic Consistency Test

Search Result 6, Processing Time 0.037 seconds

Isobaric Vapor-Liquid Equilibrium of Toluene and Cresol Systems (톨루엔-크레졸의 정압 기-액 평형)

  • Kang, Dong-Yuk;Jang, Hoi-Gu;Han, Chang-Nam;Rho, Seon-Gyun;Cho, Dong Lyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.755-761
    • /
    • 2009
  • To a first approximation, phase behavior of a system becomes increasingly skew in proportion to the boiling point difference of system-forming constituents. Therefore, phase behavior data of a system of a large boiling point difference are to be experimentally measured for thorough understanding of the thermodynamic characteristics of such system. In this work, isobaric vapor-liquid equilibrium of a mixture consisting of toluene and cresol, which shows a large boiling point difference of nearly $100^{\circ}C$ and is consequently expected to be considerably nonideal, was measured by using a recirculating equilibrium cell at various subatmospheric pressures ranging from 10 kPa to 60 kPa. The measured VLE data were correlated with NRTL and UNIQUAC models in a satisfactory manner and the accompanying thermodynamic consistency test represented soundness of the measurements. In addition, the excess molar volume of the mixture was also measured with a vibrating densitometer and correlated with a Redlich-Kister polynomial. A negative excess volume prevailed over the whole concentration range, which indicates a favorable attraction between toluene and cresol isomers and results in an extensive miscibility.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Bromochloromethane System at Subatmospheric Pressures (감압하에서 1-propanol과 Bromochloromethane의 정압 기-액 평형)

  • Jang, Hoi-Gu;Kang, Choon-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.295-300
    • /
    • 2010
  • A binary system of 1-propanol and bromochloromethane which exhibits an azeotropic point and a considerable nonideal phase behavior probably due to the large boiling point difference is not amenable in the actual chemical processes such as the distillation tower and absorber. Therefore, experimental data of phase behavior data of this mixture are indispensable in understanding the inherent thermodynamic characteristics for an efficient application of the system in the industrial processes. In this work, the isobaric vapor-liquid equilibrium of a binary mixture consisting of 1-propanol and bromochloromethane was measured by using a recirculating equilibrium cell at various pressures ranging from 30 to 70 kPa. The measured VLE data were correlated in a satisfactory manner by using the UNIQUAC and NRTL models along with the thermodynamic consistency test based on Gibbs/Duhem equation. In addition, the excess molar volume of the mixture was also measured by using a vibrating densitometer and correlated with a Redlich-Kister polynomial.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures (일정압력하에서 1-propanol/benzene 계의 기-액 상평형)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.222-228
    • /
    • 2018
  • Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ${\pm}0.2$.

Vapor-Liquid Equilibria for the Systems of MTBE-Methanol, MTBE-n-Heptane, n-Heptane-Methanol by Using Head Space Gas Chromatography (Head Space Gas Chromatography를 이용한 MTBE-Methanol, MTBE-n-Heptane, n-Heptane-Methanol계의 기액평형)

  • Lee, Ju-Dong;Lee, Tae-Jong;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.706-713
    • /
    • 1994
  • Isothermal vapor-Liquid equilibrium data have been measured for binary systems MTBE-methanol, MTBE-n-heptane, and methanol-n-heptane at $45^{\circ}C$ and $65^{\circ}C$ by using head space gas chromato-graphy (H.S.G.C). Among these systems a minimum azeotrope was observed in both of MTBE-methanol system and n-heptane-methanol system. Particularly n-heptane-methanol system has a heterogeneous minimum azotrope since it has an immisible region. These equilibrium data were correlated with the excess Gibbs energy model, and the thermodynamic consistency test was also carried out by using Redlich-Kister equation.

  • PDF

Measurements and Correlations of Isobaric Vapor-Liquid Equilibrium for Glycerol-Water Systems (Glycerol-물 계에 대한 등압 기액평형의 측정과 상관관계)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.893-900
    • /
    • 1997
  • In this study, vapor-liquid equilibria of a binary system, which consists of glycerol and water, are measured using a vaporrecirculating modified Othmer still at various subatmospheric pressures. The constituent components of the binary system considered in this study exhibit a large difference in the boiling temperatures. Since it is generally observed that the properties of a mixture greatly differ from those of the pure components, the phase equilibrium characteristics of a mixture can not be predicted from the properties of the pure components. Furthermore, an abrupt increase in the boiling temperature occurs as the concentration of the higher boiling component exceeds a certain value. Therefore, it is essential to acquire realistic phase equilibrium data of the mixture for industrial applications. Using the UNIQUAC model, the experimental vapor-liquid equilibrium data are correlated with good accuracy. The thermodynamic consistency test is also performed to ensure soundness of the data.

  • PDF

Interfacial Properties of Gradient Specimen of CNT-Epoxy Nanocomposites using Micromechanical Technique and Wettability (미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Gyu
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • Interfacial evaluation of glass fiber reinforced carbon nanotube (CNT)-epoxy nanocomposite was investigated by micromechanical technique in combination with wettability test. The contact resistance of the CNT-epoxy nanocomposite was measured using a gradient specimen, containing electrical contacts with gradually-increasing spacing. The contact resistance of CNT-epoxy nanocomposites was evaluated by using the two-point method rather than the four-point method. Due to the presence of hydrophobic domains on the heterogeneous surface, the static contact angle of CNT-epoxy nanocomposite was about $120^{\circ}$, which was rather lower than that for super-hydrophobicity. For surface treated-glass fibers, the tensile strength decreased dramatically, whereas the tensile modulus exhibited little change despite the presence of flaws on the etched fiber surface. The interfacial shear strength (IFSS) between the etched glass fiber and the CNT-epoxy nanocomposites increased due to the enhanced surface energy and roughness. As the thermodynamic work of adhesion, $W_a$ increased, both the mechanical IFSS and the apparent modulus increased, which indicated the consistency with each other.