DOI QR코드

DOI QR Code

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures

일정압력하에서 1-propanol/benzene 계의 기-액 상평형

  • Received : 2017.10.11
  • Accepted : 2017.12.15
  • Published : 2018.04.01

Abstract

Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ${\pm}0.2$.

석유화학산업의 대표적인 물질로 쓰이는 벤젠은 각종 화학 제품의 기초 물질이다. 그러나 일반적으로 벤젠은 석유화학 산업에서 순수 물질로 존재하지 못하고 알코올류와 벤젠 혼합물로 존재하게 된다. 또한 알코올을 한 성분으로 하는 혼합물은 공비 혼합물이 생성되기 때문에 분리 정제를 위해서는 상평형 데이터가 필수적이다. 본 연구에서는 알코올을 대표하는 1-프로판올을 사용하여 1-프로판올/벤젠 계에 대하여 재순환 평형장치를 이용하여 평형 온도/압력 효과에 따른 상평형 연구를 수행하였다. 측정된 기-액 평형 데이터는 UNIQUAC 식과 WILSON 식을 이용하여 상관관계 시키고 Gibbs/Duhem식을이용하여열역학적건전성을확인하였다. 상평형실험결과 RMSE (Root Mean Square Error)와 AAD (Average Absolute Deviation)는 두 모델식에서 0.05 이하의 값을 보여 실험값과 계산 값이 잘 일치함을 알 수 있었다. 또한 Gibbs/Duhem식을 이용하여 열역학적 건전성을 판별한 결과 잔류항 값이 ${\pm}0.2$ 이내에 분포하는 것을 통해 데이터에 대한 건전성을 확인할 수 있었다.

Keywords

References

  1. Lide, D. R., ed., CRC Handbook of Chemistry and Physics (86th ed.). BoCa Raton (FL): CRC Press(2005).
  2. Arnold, D., Plank, C., Erickson, E. and Pike, F., "Solubility of Benzene in Water," Industrial & Engineering Chemistry Chemical & Engineering Data Series., 3(2), 253-256(1958). https://doi.org/10.1021/i460004a016
  3. Smiljanic, J. D., Kijevcanin, M. Lj., Djordjevic, B. D., Grozdanic, D. K. and Serbanovic, S. P., "Densities and Excess Molar volumes of the Ternary Mixture 2-butanol + chloroform + benzene and Binary Mixtures 2-butanol + chloroform, or + benzene over the Temperature Range (288.15 to 313.15) K," Journal of Chemical & Engineering Data, 53(8), 1965-1969(2008a). https://doi.org/10.1021/je800157v
  4. Kijevcanin, M. Lj., Puric, I. M., Radovic, I. R., Djordjevic, B. D. and Serbanovic, S. P., "Densities and Excess Molar Volumes of the Binary 1-Propanol + Chloroform and 1-Propanol + Benzene and Ternary 1-Propanol + Chloroform + Benzene Mixtures at (288.15, 293.15,298.15, 303.15,308.15, and 313.15) K," J. Chem. Eng. Data, 52(5), 2067-2071(2007). https://doi.org/10.1021/je700254t
  5. Tanaka, R. and Toyama, S., "Excess Molar Volumes and Excess Molar Heat Capacities for Binary Mixtures of (Ethanol + Benzene, or Toluene, or o-Xylene, or Chlorobenzene) at a Temperature of 298.15 K," J. Chem. Eng. Data, 42(5), 871-874(1997). https://doi.org/10.1021/je9700479
  6. Coker, A. Kayode, Ludwig, Ernest E., Ludwig's Applied Process Design for Chemical And Petrochemical Plants. 1. Elsevier. p. 114(2007).
  7. Grayson, M., Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Wiley, New York(1978).
  8. Kim, H.-D., Hwang, I.-C. and Park, S.-J., "Isothermal Vapor-liquid at 323.15 K and Excess Molar Volumes and Refractive Indices at 298.15 K for the Ternary System Propyl Vinyl Ether + 1-propanol + benzene and Its Binary Sub-systems," Fluid Phase Equil., 274, 73-79(2008). https://doi.org/10.1016/j.fluid.2008.09.005
  9. Ovejero, G., Dolores Romero, M., Diez, E., Lopes, T. and Diaz, I., "Evaluation of (vapor+liquid) Equilibria for the Binary Systems( 1-oCtanol+cyclohexane) and (1-oCtanol+n-hexane), at Low Alcohol Composition," J. Chem. Thermodynamics, 40, 1617-1620 (2008). https://doi.org/10.1016/j.jct.2008.06.005
  10. Abrams, D. S. and Prausnitz, J. M., "Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems," AIChE J., 21, 116-128(1975). https://doi.org/10.1002/aic.690210115
  11. Wilson, G. M. and Deal, C. H., "Activity Coefficients and Molecular Structure," Ind. Chem. Fundam., 1, 20-23(1962). https://doi.org/10.1021/i160001a003
  12. Redlich, O. and Kister, A. T., "Algebraic Representation of Thermodynamic Properties and the Classification of Solutions," Ind. Eng. Chem., 40, 345-348(1948). https://doi.org/10.1021/ie50458a036
  13. Park, S. J. and Doh, M. S., "Measurement of the Vapor-liquid Equilibria and the Excess Molar Volumes of Benzene, Toluene and p-Xylene Mixtures with Alcohols(C1-C4)," HWAHAK KONGHAK, 35(1), 46-54(1997).
  14. Artal, M., Embid, J. M., Otin, S. and Velasco, I., "Isothermal Vaporliquid equilibria of BromoChloromethane or 1-bromo-2-chloroethane + tetrachloromethane or Benzene. Experimental Measurements and Analysis in Terms of Group Contributions," Fluid Phase Equil., 154, 223-239(1999). https://doi.org/10.1016/S0378-3812(98)00448-8
  15. Gnanakumari, P., Venkatesu, P., Hsieh, C. T., Prabhakara Rao, M. V., Lee, M. J. and Lin, H. M., "Isobaric(vapour+liquid) equilibrium for N-methyl-2-pyrrolidone with Branched Alcohols," J. Chem. Thermodynamics, 41, 184-188(2009). https://doi.org/10.1016/j.jct.2008.09.021
  16. Smith, J. M., Van Ness, H. C. and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, INC(2005).
  17. Prausnitz, J. M., Lichtenthaler, R. N. and Azevedo, E. G. de, "Molecular Thermodynamics of Fluid-Phase Equilibria," 2th ed., Prentice Hall(1986).
  18. Ramsauer, B., Neueder, R. and Kunz, W., "Isobaric Vapour-Liquid Equilibria of Binary 1-propoxy-2-propanol Mixtures with Water and Alcohols at Reduced Pressure," Fluid Phase Equil., 272, 84- 92(2008). https://doi.org/10.1016/j.fluid.2008.06.022
  19. Dean, J. A., LANGE'S Handbook of CHEMISTRY, 5th ed., McGRAW - HILL, INC(1997).
  20. Reid, R. C., Prausnitz, J. M. and Poling, B. E., The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York(1987).
  21. Ashour, I. and Abu-Eishah, S. I., "Liquid-Liquid Equilibria of Ternary and Six-Component Systems Including Cyclohexane, Benzene, Toluene, Ethylbenzene, Cumene, and Sulfolane at 303.15 K," J. Chem. Eng. Data, 54(5), 1717-1722(2006).
  22. Park, S. J., Han, K. J. and Choi, Y. Y., "The Vapor-liquid Equilibria and Excess Properties for the Silicon Chloride Containing Binary Systems," J. Korean Ind. Eng. Chem., 15, 791-796(2004).
  23. Darwish, N. A. and Al-Khateib, A. A., "Isobaric Vapor-liquid Equilibria of the System toluene+n-butanol at 94.0, 70.5 and 56.4 kPa," Fluid Phase Equil., 132, 215-223(1997). https://doi.org/10.1016/S0378-3812(97)00006-X
  24. Jang, H.-G. and Kang, C.-H., "Isobaric Vapor-liquid Equilibrium of 1-propanol and BromoChloromethane system at Subatmospheic Pressures," Appl. Chem. Eng., 21(3), 295-300(2010).
  25. Brandrup J., Immergut E. H. and Grulke E. A., "Polymer Hand- Book," 4th ed., III/59-61, Wiley Interscience(1998).
  26. Kang, D. Y., Jang, H. G., Han, C. N., Rho, S. G., Cho, D. L. and Kang, C. H., "Isobaric Vapor-Liquid Equilibrium of Toluene and Cresol Systems," Korean Chem. Eng. Res., 47(6), 755-761(2009).