Browse > Article

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Bromochloromethane System at Subatmospheric Pressures  

Jang, Hoi-Gu (School of Applied Chemical Engineering, Chonnam National University)
Kang, Choon-Hyoung (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 295-300 More about this Journal
Abstract
A binary system of 1-propanol and bromochloromethane which exhibits an azeotropic point and a considerable nonideal phase behavior probably due to the large boiling point difference is not amenable in the actual chemical processes such as the distillation tower and absorber. Therefore, experimental data of phase behavior data of this mixture are indispensable in understanding the inherent thermodynamic characteristics for an efficient application of the system in the industrial processes. In this work, the isobaric vapor-liquid equilibrium of a binary mixture consisting of 1-propanol and bromochloromethane was measured by using a recirculating equilibrium cell at various pressures ranging from 30 to 70 kPa. The measured VLE data were correlated in a satisfactory manner by using the UNIQUAC and NRTL models along with the thermodynamic consistency test based on Gibbs/Duhem equation. In addition, the excess molar volume of the mixture was also measured by using a vibrating densitometer and correlated with a Redlich-Kister polynomial.
Keywords
isobaric VLE; 1-propanol; bromochloromethane; thermodynamic models; thermodynamic consistency test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 V. Gil-Hernandez, P. Garaia-Gimenez, S. Otin, M. Artal, and I. Velasco, J. Chem. Thermodynamics, 37, 7 (2005).   DOI   ScienceOn
2 G. Ovejero, M. Dolores Romero, E. Diez, T. Lopes, and I. Diaz, J. Chem. Thermodynamics, 40, 1617 (2008).   DOI   ScienceOn
3 I. Ashour and S. I. Abu-Eishah, J. Chem. Eng. Data, 54, 1717 (2006).
4 S. J. Park, K. J. Han, and Y. Y. Choi, J. Korean Ind. Eng. Chem., 15, 791 (2004).
5 L. Lepori and E. Mateeoli, Fluid Phase Equilib., 134, 113 (1997).   DOI   ScienceOn
6 N. A. Darwish and A. A. Al-Khateib, Fluid Phase Equilib., 132, 215 (1997).   DOI   ScienceOn
7 B. Ramsauer, R. Neueder, and W. Kunz, Fluid Phase Equilibria, 272, 84 (2008).   DOI   ScienceOn
8 J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 5th ed., McGraw-Hill, INC (1996).
9 H.-D. Kim, I.-C. Hwang, and S.-J. Park, Fluid Phase Equilib., 274, 73 (2008).   DOI   ScienceOn
10 A. Villares. M. Haro, S. Martin, M. C. Lopez, and C. Lafuente, Fluid Phase Equilib., 225, 77 (2004).   DOI   ScienceOn
11 M. Artal, J. M. Embid, S. Otin, and I. Velasco, Fluid Phase Equilibria, 154, 223 (1999).   DOI   ScienceOn
12 P. Gnanakumari, P. Venkatesu, C. T. Hsieh, M. V. Prabhakara Rao, M. J. Lee, and H. M. Lin, J. Chem. Thermodynamics, 41, 184-188 (2009).   DOI   ScienceOn
13 R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1987).
14 O. Redlich and A. T. Kister, Ind. Eng. Chem., 40, 345 (1948).   DOI
15 S. J. Park and M. S. Doh, HWAHAK KONGHAK, 35, 46 (1997).
16 J. A. Dean, LANGE'S Handbook of CHEMISTRY, 5th ed., McGraw-Hill, INC (1997).
17 M. Grayson, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Wiley, New York (1978).