• Title/Summary/Keyword: Thermodynamic Characteristics

Search Result 355, Processing Time 0.024 seconds

PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

  • Choi, Jung-Sik;Shin, Young-Joon;Lee, Ki-Young;Yun, Yong-Sup;Choi, Jae-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.363-372
    • /
    • 2014
  • In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI) thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD) analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz). However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, $Teflon^{(R)}$) as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K ($260^{\circ}C$), even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

Study on Adsorption Kinetic of Amaranth Dye on Activated Carbon (활성탄에 의한 아마란스 염료의 흡착동력학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • The adsorption characteristics of amatanth dye by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of amaranth dye were carried out at 298, 308 and 318 K, using aqueous solutions with 100, 200 and 300 mg/L initial concentration of amatanth. It was established that the adsorption equilibrium of amaranth dye on granular activated carbon was successfully fitted by Langmuir isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 100, 200 and 300 mg/L initial concentration of amatanth, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The estimated values for standard free energy were -5.08 - -8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a spontaneous process. The positive value for enthalpy, 38.89 kJ/mol indicates that adsorption interaction of amatanth dye on activated carbon is an endothermic process.

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon (활성탄에 의한 Congo Red의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich's separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (${\Delta}H$=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (${\Delta}G$=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.

Characters of Mesoscale Convective Complex Development in Korean Peninsula (한반도 중규모 대류복합체의 발달특성에 관한 연구)

  • Lee Soon-Hwan;Won Hyo-Sung
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.698-705
    • /
    • 2005
  • Heavy rain fall in the Korean Peninsula often occurs in the summer season due to MCC (Mesoscale Convective Complex) with complex mechanism. We analysed the Characteristics and the developing mechanism of MCC occurred at 14 July 2004. The results are as follows: a) There is strong wind inflow from the South-west china sea with heavy moisture and this moisture flux acts as the source of heavy rain, b) Because of the separation of upper and lower atmosphere due to an inversion layer at 600hPa, atmosphere over the Korea Peninsula is suddenly unstable. c) This MCC shows strong shear not with wind direction, but with the wind speed, and this wind shear continues the thermodynamic unstability of the convective system. d) MCC was suddenly developed over Heuksando at 1400LST 14 July 2004. Thus we can say that the topography also was strongly associated with the development of MCC and it is also necessary to clarify the relationship between topography and MCC development. in future research.

Effect of Promotor Addition to Pt/TiO2 Catalyst on Reverse Water Gas Shift Reaction (RWGS 반응을 위한 Pt/TiO2 촉매의 조촉매 첨가 영향 연구)

  • Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.339-344
    • /
    • 2017
  • Reaction characteristics and catalytic activities on reverse water gas shift (RWGS) reaction over $Pt/TiO_2$ catalyst and Pt based catalysts added promoters were investigated. It was confirmed that RWGS reaction activity was affected by the kind of supports and active metals and the $Pt/TiO_2$ catalyst showed the highest catalytic activity. From various inlet $CO_2$ concentration tests and also the evaluation of thermodynamic equilibrium conversion, the catalytic activity of $Pt/TiO_2$ catalyst could be evaluated objectively and it was found to be higher than that of commercial catalysts. The catalytic activity could increase by adding Ca and Na as promoters. The XPS analysis revealed that the catalytic activity is closely correlated with the electron density of surface active sites.

Chemical Reacting Flow Analysis of the 30 tonf - class KARl LRE Nozzle (KARI 30톤급 액체로켓엔진 노즐 유동 화학 반응 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, Duck-Rae;Choi, J.Y.;Choi, H.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.105-109
    • /
    • 2007
  • Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were used to rocket nozzle flow, those were coupled with the methods of computational fluid dynamics code. For a design of high temperature rocket nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be an efficient design tool for predicting maximum thermodynamic performance of the nozzle. In this study, shifting-equilibrium flow analysis was carried out for the 30 $ton_f$-class KARl liquid rocket engine nozzle together with frozen flow. The performance evaluation based on the 30 $ton_f$-class KARl LRE nozzle flow analyses will provide an understanding of the thermochemical process in the nozzle and performances of nozzle.

  • PDF

The Effect of Substituent, Pressure and Temperature on the Dissociation Constants of Organic Acids. (2) Dissociation Constants of Some Substituted Naphthols in Aqueous Solution (유기산의 해리평형에 미치는 치환기 효과와 그의 온도 및 압력의 영향. (2) 수용액중에서 몇가지 치환나프톨류의 해리상수)

  • Jung-Ui Hwang;Zun-Ung Bae;Jong-Jae Chung;Jae-Won Jung;Kyung-Hee Chang
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.152-158
    • /
    • 1986
  • The dissociation constants of 4-Cl-1-naphthol, 6-Br-2-naphthol and $8-NH_2-2-naphthol$ in aqueous solution were measured by spectroscopic method in the temperature range from 25 to 40${\circ}C$ and pressure up to 2000bar. The dissociation constants were decreased as the substituents were inserted in naphthol f rom $4.4{\times}10^{-10}\;to\;5.82{\times}10^{-11}$ as chloride compound and $2.5{\times}10^{-10}\;to\;3.44{\times}10^{-11}\;or\;4.21{\times}10^{-11}$ as bromine or amino compounds, respectively. This decrease can be explained with the I-or R-effects of substituents. From the dissociation constants various thermodynamic properties were calculated and discussed the characteristics of the dissociation reaction.

  • PDF

Process Technology of the Direct Separation and Recovery of Iron and Zinc Metals Contained in High Temperature EAF Exhaust Gas

  • Furukawa, Takeshi;Sasamoto, Hirohiko;Isozaki, Shinichi;Tanno, Fumio
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.393-397
    • /
    • 2001
  • The innovatory process, that is the direct separation and recovery of the iron and zinc metals contained in the high temperature exhaust gas generated from the electric arc furnace fer the inn scrap melting and/or the dust treatment, has been proposed. This proposed process consists of the moving coke bed filter that is directly connected to the electric furnace, and the following heavy metal condenser. The exhaust gas passes through the filter and the condenser right after exhausting from the electric furnace. The moving coke bed filter is being controlled at about 1000℃ and collects iron and slag components contained in the high temperature exhaust gas. Heavy metals such as zinc and lead pass through the filter as vapor. Based on the thermodynamic considerations, the iron oxide and the zinc oxide are reduced in the filter. The solution loss reaction rate is comparatively low at about 1000℃ in the coke bed filter by the analysis using the mathematical simulation model. The heavy metal condenser is installed in the position after the coke bed filter, and rapidly cools the gas from about 1000℃ to 450℃ by a full of the cooling medium like the solid ceramic ball in addition to the cooling from the wall. The zinc and lead vapor condense and separate f개m the gas in a liquid state. The investigation of the characteristics of the exhaust gas of the commercial electric arc furnace, the fundamental experiments of the laboratory scale and the bench scale ensured the formation of this proposed process. A small-scale pilot plant examination is carrying out at present to confirm the formation of the process. It is certain that the dust generation of the electric arc furnace is extremely decreased, and it can save the energy consumption of usual dust treatment processes by the realization of this process.

  • PDF

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄을 이용한 수중의 항생제 Amoxicillin의 흡착 특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.369-375
    • /
    • 2018
  • Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.

Function approximation of steam table using the neural networks (신경회로망을 이용한 증기표의 함수근사)

  • Lee, Tae-Hwan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.459-466
    • /
    • 2006
  • Numerical values of thermodynamic properties such as temperature, pressure, dryness, volume, enthalpy and entropy are required in numerical analysis on evaluating the thermal performance. But the steam table itself cannot be used without modelling. From this point of view the neural network with function approximation characteristics can be an alternative. the multi-layer neural networks were made for saturated vapor region and superheated vapor region separately. For saturated vapor region the neural network consists of one input layer with 1 node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. For superheated vapor region it consists of one input layer with 2 nodes, two hidden layers with 15 and 25 nodes each and one output layer with 3 nodes. The proposed model gives very successful results with ${\pm}0.005%$ of percentage error for temperature, enthalpy and entropy and ${\pm}0.025%$ for pressure and specific volume. From these successful results, it is confirmed that the neural networks could be powerful method in function approximation of the steam table.