Browse > Article
http://dx.doi.org/10.14478/ace.2018.1015

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel  

Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.4, 2018 , pp. 369-375 More about this Journal
Abstract
Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.
Keywords
activated carbon; waste citrus peel; adsorption; antibiotics; amoxicillin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Z. Aksu and O. Tunc, Application of biosorption for penicillin G removal: comparison with activated carbon, Process Biochem., 40, 831-847 (2005).   DOI
2 A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water, Sci. Total Environ., 407(8), 2711-2723 (2009).   DOI
3 X. Pan, C. Deng, D. Zhang, J. Wang, G. Mu, and Y. Chen, Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests, Aquat. Toxicol., 89, 207-213 (2008).   DOI
4 F. Baquero, J. L. Martinez, and R. Canton, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19(3), 260-265 (2008).   DOI
5 S. D. Baere and P. D. Backer, Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection, Anal. Chim. Acta., 586(1-2), 319-325 (2007).   DOI
6 I. Gozlan, A. Rotstein, and D. Avisar, Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment, Chemosphere, 91, 985-992 (2013).   DOI
7 A. Mohammadi, M. Kazemipour, H. Ranjbar, R. B. Walker, and M. Ansari, Amoxicillin removal from aqueous media using multi-walled carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 23(2), 165-169 (2014).   DOI
8 E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43, 2419-2430 (2009).   DOI
9 M. A. Chayid and M. J. Ahmed, Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies, J. Environ. Chem. Eng., 3, 592-1601 (2015).
10 G. Moussavi, A. Alahabadi, K. Yaghmaeian, and M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217, 119-128 (2013).   DOI
11 F. Yu, Y. Li, S. Han, and J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153, 365-385 (2016).   DOI
12 J. Gao and J. A. Pedersen, Adsorption of sulfonamide antimicrobial agents to clay minerals, Environ. Sci. Technol., 39, 9509-9516 (2005).   DOI
13 M. Dutta, N. Dutta, and K. Bhattacharya, Aqueous phase adsorption of certain beta-lactam antibiotics onto polymeric resins and activated carbon, Sep. Purif. Technol., 16, 213-224 (1999).   DOI
14 W. Adriano, V. Veredas, C. Santana, and L. Goncalves, Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models, Biochem. Eng. J., 27, 132-137 (2005).   DOI
15 M. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface, Chem. Rev., 60(2), 235-241 (1960).   DOI
16 M. Benamor, Z. Bouariche, T. Belaid, and M. T. Draa, Kinetic studies on cadmium ions by Amberlite XAD7 impregnated resins containing di(2-ethylhexyl) phosphoric acid as extractant, Sep. Purif. Technol., 59(1), 74-84 (2008).   DOI
17 I. Langmuir, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403 (1918).   DOI
18 H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
19 O. Pezoti, A. L. Cazetta, K. C. Bedin, L. S. Souza, A. C. Martins, T. L. Silva, O. O. S. Junior, J. V. Visentainer, and V. C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288, 778-788 (2016).   DOI
20 X. Jin, S. Zha, S. Li, and Z. Chen, Simultaneous removal of mixed contaminants by organoclays- amoxicillin and Cu(II) from aqueous solution, Appl. Clay Sci., 102, 196-201 (2014).   DOI
21 S. X. Zha, Y. Zhou, X. Jin, and Z. Chen, The removal of amoxicillin from wastewater using organobentonite, J. Environ. Manage., 129, 569-576 (2013).   DOI
22 D. Hu and L. Wang, Adsorption of amoxicillin onto quaternized cellulose from flax noil: Kinetic, equilibrium and thermodynamic study, J. Taiwan Inst. Chem. Eng., 64, 227-234 (2016).   DOI
23 M. G. Lee, S. K. Kam, and K. H. Suh, Adsorption of non-degradable Eosin Y by activated carbon, J. Environ. Sci. Int., 21(5), 623-631 (2012).   DOI
24 C. H. Lee, S. K. Kam, and M. G. Lee, Adsorption characteristics analysis of 2,4-dichlorophenol in aqueous solution with activated carbon prepared from waste citrus peel using response surface modeling approach, Korean Chem. Eng. Res., 55(5), 723-730 (2017).   DOI
25 R. Baccar, M. Sarra, J. Bouzid, M. Feki, and P. Blanquez, Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product, Chem. Eng. J., 211-212, 310-317 (2012).   DOI
26 R. Ding, P. Zhang, M. Seredych, and T. J. Bandosz, Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents, Water Res., 46, 4081-4090 (2012).   DOI
27 M. J. Ahmed and S. K. Theydan, Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption, J. Anal. Appl. Pyrolysis, 99, 101-109 (2013).   DOI
28 H. R. Pouretedal and N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1, 64-73 (2014).   DOI
29 S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017).   DOI
30 S. K. Kam and M. G. Lee, Response surface modeling for the adsorption of dye Eosin Y by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(3), 270-277 (2018).   DOI
31 A. Ucer, A. Uyanik, and S. F. Aygun, Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon, Sep. Purif. Technol., 47(3), 113-118 (2006).   DOI
32 C. H. Lee, J. M. Park, and M. G. Lee, Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: Adsorption isotherm and kinetics, J. Environ. Sci. Int., 24, 151-162 (2015).   DOI
33 M. Sekar, V. Sakthi, and S. Rengaraj, Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell, J. Colloid. Interface Sci., 279, 307-313 (2004).   DOI
34 H. Liu, Z. Hu, H. Liu, H. Xie, S. Lu, Q. Wang, and J. Zhang, Adsorption of amoxicillin by Mn-impregnated activated carbons: Performance and mechanisms, RSC Adv., 6, 11454-11460 (2016).   DOI
35 V. Homem, A. Alves, and L. Santos, Amoxicillin removal from aqueous matrices by sorption with almond shell ashes, Int. J. Environ. Anal. Chem., 90(14-15), 1063-1084 (2010).   DOI