• Title/Summary/Keyword: Thermocouples

Search Result 265, Processing Time 0.036 seconds

Corium melt researches at VESTA test facility

  • Kim, Hwan Yeol;An, Sang Mo;Jung, Jaehoon;Ha, Kwang Soon;Song, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1547-1554
    • /
    • 2017
  • VESTA (Verification of Ex-vessel corium STAbilization) and VESTA-S (-small) test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging $ZrO_2$ melt jet on a sacrificial material were performed to investigate the ablation characteristics. $ZrO_2$ melt in an amount of 65-70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40), and the other is a stainless steel (SUS304) melt. Metallic melt in an amount of 1.5-2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. $ZrO_2$ melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is $UO_2$ 60%, Zr 10%, $ZrO_2$ 15%, SUS304 14%, and $B_4C$ 1%, was melted in a cold crucible using an induction heating technique.

Identification of Compliance Function for Early-Age Concrete Based on Measured Strain & Thermal Stress Histories (변형률 및 열응력 이력 계측을 통한 초기재령 콘크리트의 컴플라이언스 함수 추정)

  • Oh, Byung-Hwan;Shin, Joon-Ho;Choi, Seong-Cheol;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.662-669
    • /
    • 2003
  • Recently, the serviceability and durability of concrete structures under thermal load have received great attention. The thermal stress and clacking behavior of concrete at early ages are one of the important factors that affect such serviceability and durability of concrete structures. Nevertheless, most studies on the behavior of early-age concrete have been confined to the temperature and strain development itself in the laboratory. The desirable efforts to explore the material properties of concrete at early-ages have not been made extensively so far. The purpose of the present study is, therefore, to identify some important material properties that affect the stress behavior of concrete at early-ages. To this end, full-scale concrete base-restrained wall members have been fabricated, and many sensors including thermocouples, strain meters and stress meters were installed inside of the wall members. These sensors were to measure the development of temperatures, strains and stresses at several location in concrete walls during the hardening and curing phase of early-age concrete. By using these measured values of strain and stress, the compliance function at early-age was identified. The basic form of compliance function derived in this study follows the double-power law. However, the results of present study indicate that the values of existing compliance functions are much lower than actual values, especially at very early-ages. It can be seen that the prediction of stresses of early-age concrete based on the proposed compliance function agrees very well with test data. The present study allows more realistic evaluation of varying stresses in early-age concrete under thermal load.

Heat Insulation Characteristics of Multi Layer Materials for Greenhouse (시설원예용 조합형 다겹보온자재의 보온 특성)

  • Chung, Sung-Won;Kim, Dong-Keon;Lee, Suk-Gun;Nam, Sang-Heon;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.341-347
    • /
    • 2009
  • Experiments and computations were conducted to investigate the heat insulation characteristics of multi layer materials for cultivation greenhouse. In case of the experiments, measurements of temperature were carried out with a K-type thermocouples and data logger to research the heat transfer in the experimental module generated by the heat source. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of multi layer materials. The numerical analyses were performed by commercial code CFX-11 according to the variation of multi layer materials without air layer. The experimental results showed that the heat insulation of multi layer materials was higher than single layer materials by 50~90%. It was found that the effect of heat insulation was raised by the combination of multi layer materials.

A Comparative Study on Buffer Characteristic of Indirect Moxibustion (격물구(隔物灸)의 격물(隔物) 특성에 따른 온열자극 비교연구)

  • Wang, Kai-Hsia;Kim, Eun-Jung;Cho, Hyun-Seok;Kim, Kap-Sung;Lee, Seung-Deok;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.29 no.5
    • /
    • pp.75-85
    • /
    • 2012
  • Objectives : Indirect moxibustion is one of the thermotherapy in Korean medicine and buffer of ginger and mankshood slice are common materials to be used. However it is difficult to control the power of thermal stimulation and the stimulation is greatly influenced by the characteristic of buffer. So we research on the buffer characteristic of indirect moxibustion according to the thickness, diameter and water content changes. Methods : We used thermocouples to measure temperature from surface to depth of 2, 4, 6, 8, 10, 12, 14mm on tissue model and calculated peak temperature($^{\circ}C$). The data were analyzed with student t-test and one-way ANOVA(p<0.05). Results : 1. The peak temperature of indirect moxibustion with ginger were determined by thickness of ginger slice and temperature changes according to the thickness at intervals of 1mm but according to the diameter at intervals of 4mm. 2. The peak temperature of indirect moxibustion with mankshood were determined by thickness of mankshood slice also. The peak temperature of mankshood moxibustion was higher than that of ginger moxibustion. 3. In this study, 2mm-thick-ginger slice and 3mm-thick-mankshood slice were suitable for indirect moxibustion. Variation in the thickness of which is more efficient to control the power of thermal stimulation on indirect moxibustion. 4. The more water loss we got on ginger slice, the higher peak temperature we measured at the surface of moxibustion. But the thermal stimulation was not conducted more than 2mm in the depth. 5. The thickness and water content of buffer are important in indirect moxibustion. Conclusions : The temperature of indirect moxibustion depends on the thickness of buffer than the diameter of it. Therefore, it is more efficient according to the thickness of buffer so that we control the power of thermal stimulation. And water content of buffer is one of the important factor in indirect moxibustion.

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

The Study on Experimental Method of Smoldering Ground Fire in Forest Fire (뒷불 특성에 관한 실험방법 연구)

  • Kim, Dong-Hyun;Kim, Jang-Hwan;Kim, Eung-Sik
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A smoldering ground fire can be a probable cause of reignition of surface fire when transmitted from Fermentation layer to Humus layer with temperature higher than that of ignition. Purpose of this paper is to identify experimental methodology on the potential risk of a smoldering ground fire, which is similar to the real surface fuel bed, and its combustion characteristics. The fuel model designed in this study is composed of 3 layers such as Litter layer, Fermentation layer and Humus layer and 8 Thermocouples are set through 3 layer at each boundary and in between to detect the temperature change and duration of smoldering and propagation velocity. As a result, it was observed that ignition conditions in the boundary between L layer and F layer determined transmission and non-transmisstion to F-H layer. In addition, range of critical humidity at which a smoldering ground fire was transmitted in a material layer was 33~44% and when temperature exceeds $350^{\circ}C$, likelihood of transmission of a smoldering ground fire was high. In the research, the experimental model for multi-layer smoldering ground fire is suggested and information about propagation of smoldering fire, possibility of reignition according to moisture content, propagation velocity and temperature change are obtained, Also, the built-up methods were established to help analyze basic characteristics of smoldering ground fire.

Design of Chamber in Continuous Furnace for Uniform Temperature Distribution (균일 온도를 유지하는 연속 소성로 체임버의 설계)

  • Lee, Kwangju;Choi, Joon Hyeok;Jang, Han Seul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5344-5351
    • /
    • 2013
  • Chambers in a continuous furnace were designed. A chamber consists of inlets and outlets of nitrogen gas which is used to discharge burned gas and heating pipes (HP) which are used to keep temperature of fired materials at $1,300^{\circ}C$. Design variables were numbers of inlets and outlets, distance between floor and lower HP ($h_1$), distance between lower HP and fired materials ($h_2$), distance between fired materials and upper HP ($h_3$), temperature of HP, numbers of HP and distance between HP. The numbers of inlets and outlets were determined so that nitrogen gas formed a laminar flow for efficient discharge. All other design variables were determined so that temperature of fired materials is as uniform as possible near $1,300^{\circ}C$. Chambers were produced and temperature was measured at 21 points using thermocouples. The largest deviation from $1,300^{\circ}C$ was less than ${\pm}2.2^{\circ}C$.

Experimental Study of Workpiece Temperature Variation in Reheating Furnace (재가열로에서 소재 온도 변화의 실험적 분석)

  • Lee, Chunsik;Lee, Jaeyong;Ryu, Bo-Hyun;Yeom, Choongsub;Rhim, Dong-Ryul
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.100-106
    • /
    • 2017
  • The materials of SUS304 and SS400 are adopted for prediction of workpiece temperature variation according to ambient temperature in a reheating furnace. Five thermocouples were installed in a depth direction inside the material, and the ambient temperature was raised to 1200 Celsius degrees. As a result, the material average temperature reached more than 1150 Celsius degrees, and the surface and inside of workpiece locally showed a temperature difference of more than 10K. In order to verify the experimental results, numerical analysis was conducted by applying a thermal model, and the error of numerical simulation compared with the experimental results was within the range of 15K at the average outlet temperature. Also, the error was relatively higher in the SS400 material, which has a larger specific heat change than the SUS304 material. In conclusion, the workpiece temperature in the reheating furnace can be achieved through the atmospheric temperature control, and it is experimentally proved that the material temperature change according to the atmospheric temperature can be estimated within about 3% error range at the outlet position using a thermal model.

ANALYSIS OF TEMPERATURE RISE ON THE SURFACE OF BUCHANAN PLUGGER USING THERMOCOUPLE (열전대(thermocouple)를 이용한 Buchanan Plugger 표면의 온도상승 분석)

  • Cho, Jin-Suk;Hwang, Yun-Chan;Kim, Sun-Ho;Hwang, In-Nam;Choi, Bo-Young;Jeong, Young-Jin;Juhng, Woo-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.4
    • /
    • pp.334-340
    • /
    • 2003
  • This study was performed to evaluate the actual temperature rise on the surface of Buchanan plugger using thermocouple. The heat carrier system 'System B Heatsource'(Model 1005, Analytic Technologies, Redmond, WA, USA) and the Buchanan pluggers of F, FM, M and ML sizes are used for this study. The temperature was set to 200^{\circ}C on digital display and the power level on it was set to 10. Five thermocouples were placed in direct contact with the surface of each size of Buchanan's pluggers at 1 mm increments from the tip to the 4 mm length of shank. The heat control spring was touched for 5 seconds. and the temperature rise on the surface of the pluggers were measured at 1 sec intervals for more than 5 seconds with an accuracy of 0.01 using Data Logger. The data were statistically analyzed by one-way ANOVA. The results were as follows. 1. The position at which the temperature peaked was approximately at 1~2 mm far from the tip of Buchanan plugger (p<0.01). 2. The peak temperature was $215.25{\pm}2.28^{\circ}C$ in F plugger. $185.94{\pm}2.19^{\circ}C$ in FM plugger, $169.51{\pm}9.12^{\circ}C$ in M plugger, and 160.79{\pm}1.27^{\circ}C in ML plugger and the peak temperature was highest in F plugger and followed by. in descending order. FM plugger. M plugger. ML plugger showed the lowest peak temperature (p<0.01). 3. The temperature on the plugger was decreased with the increase of touching time. This results suggest that the actual temperature on the surface of the pluggers does not correlate well with the temperature set on digital display. Heat concentrates around the tip. The larger plugger reveals lower temperature rise relatively.

ANALYSIS OF TEMPERATURE RISE ON THE ROOT SURFACE DURING CONTINUOUS WAVE OF CONDENSATION TECHNIQUE (Continuous Wave of Condensation Technique으로 근관충전시 치근면 온도상승 분석)

  • Kim, Young-Ju;Hwang, Yun-Chan;Kim, Sun-Ho;Hwang, In-Nam;Choi, Bo-Young;Jeong, Young-Jin;Juhng, Woo-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.4
    • /
    • pp.341-347
    • /
    • 2003
  • This study was conducted to evaluate the temperature rise on the root surface while the root canal is being obturated using continuous wave of condensation technique. Maxillary central incisor was prepared for repeated canal obturation. Ten thermocouples (Omega Engineering Inc., Stanford, USA) were placed at 1 mm increment from the anatomical root apex. The real temperature of Buchanan plugger was recorded before insertion into the root canal. The root canal was obturated with continuous wave of condensation technique as described by Buchanan and the root surface temperature was recorded during obturation at $150^{\circ}C,{\;}200^{\circ}C,{\;}250^{\circ}C{\;}and{\;}300^{\circ}C$ temperature settings of System B HeatSource (Model 1005, Analytic technologies, Redmond, WA, USA). After completion of the temperature recording, the dentinal-cementum thickness at each sites was measured. The data were analyzed using one-way ANOVA followed by Scheffe's test and linear regression test. The results were as follows. 1. When the temperature was set at $150^{\circ}C,{\;}200^{\circ}C,{\;}250^{\circ}C{\;}and{\;}300^{\circ}C$ on the digital display of System B HeatSource, the real temperature of the plugger at the 1mm point from the tip revealed $130.82{\pm}2.96^{\circ}C,{\;}158.00{\pm}5.26^{\circ}C,{\;}215.92{\pm}6.91^{\circ}C{\;}and{\;}249.88{\pm}3.65^{\circ}C$ respectively. 2. The position of 8 mm from the anatomical apex showed the highest temperature increase at each temperature settings and it was significantly higher than those of other positions (p<0.0l). The temperature rise was constantly increased toward coronal portion from apex of the root. 3. The maximum temperature increase on the root surface was $2.37{\pm}0.09^{\circ}C{\;}at{\;}150^{\circ}C{\;}setting,{\;}3.11{\pm}0.12^{\circ}C{\;}at{\;}200^{\circ}{\;}setting,{\;}3.93{\pm}0.09^{\circ}C{\;}at{\;}250^{\circ}C{\;}setting{\;}and{\;}5.69{\pm}0.15^{\circ}C{\;}at{\;}300^{\circ}C$ setting respectively. These results suggest that it be relatively kind to the supporting tissues of the root that the root canal is obturated using continuous wave of condensation technique at $150^{\circ}C,{\;}200^{\circ}C,{\;}250^{\circ}C{\;}and{\;}300^{\circ}C$ temperature settings on digital temperature display of System B HeatSource.