• Title/Summary/Keyword: Thermocline

Search Result 201, Processing Time 0.025 seconds

Composition and Distribution of Phytoplankton with Size Fraction Results at Southwestern East/Japan Sea

  • Park, Mi-Ok
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.301-313
    • /
    • 2006
  • Abundance and distribution of phytoplankton in seawater at southwestern East/Japan Sea near Gampo were investigated by HPLC analysis of photosynthetic pigments during summer of 1999. Detected photosynthetic pigments were chlorophyll a, b, $c_{1+2}$ (Chl a, Chl b, Chl $c_{1+2}$), fucoxanthin (Fuco), prasinoxanthin (Pras), zeaxanthin (Zea), 19'-butanoyloxyfucoxanthin (But-fuco) and beta-carotene (B-Car). Major carotenoid was fucoxanthin (bacillariophyte) and minor carotenoids were Pras (prasinophyte), Zea (cyanophyte) and But-fuco (chrysophyte). Chl a concentrations were in the range of $0.16-8.3\;{\mu}g/land$ subsurface chlorophyll maxima were observed at 0-10m at inshore and 30-50 m at offshore. Thermocline and nutricline tilted to the offshore direction showed a mild upwelling condition. Results from size-fraction showed that contribution from nano+picoplankton at Chl a maximum layer was increased from 18% at inshore to 69% at offshore on average. The maximum contribution from nano+picoplankton was found as 87% at St. E4. It was noteworthy that contribution from nano+picoplanktonic crysophytes and green algae to total biomass of phytoplankton was significant at offshore. Satellite images of sea surface temperature indicated that an extensive area of the East/Japan Sea showed lower temperature ($<18\;^{\circ}C$) but the enhanced Chi a patch was confined to a narrow coastal region in summer, 1999. Exceptionally high flux of low saline water from the Korea/Tsushima Strait seemed to make upwelling weak in summer of 1999 in the study area. Results of comparisons among Chi a from SeaWiFS, HPLC and fluorometric analysis showed that presence of Chi b cause underestimation of Chi a about 30% by fluorometric analysis but overestimation by satellite data about 30-75% compared to HPLC data.

Late Pleistocene Paleoceanographic Changes of the West Equatorial Pacific (서태평양 적도 지역의 플라이스토세 후기 고해양 변화)

  • Yoo, Chan-Min;Hyeong, Ki-Seong;Moon, Jai-Woon;Kim, Ki-Hyune;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.175-185
    • /
    • 2004
  • To delineate Late Pleistocene paleoceanographic change of the West Pacific, we analyzed the oxygen and carbon isotopic ratios of two planktonic foraminifera species (G. sacculifer and N. dutertrei) from a piston core (KODOS-313) taken from the West equatorial Pacific, and they are compared with the published results of the East Pacific (ODP site 847 and RC 11-210), in terms of relative amounts and mass accumulation rates of $CaCO_3$ and eolian component, back to marine isotopic stage (MIS) 6. Differences in oxygen and carbon isotope values between two foraminifear species ($0.75%_{\circ}$ in ${\delta}^{18}O$, $0.05%_{\circ}$ in ${\delta}^{13}C$) are less than those of the East Pacific ($1.30%_{\circ}$ in ${\delta}^{18}O$, $0.14%_{\circ}$ in ${\delta}^{13}C$), which indicates smaller vertical contrasts in both temperature and nutrient between mixing-zone and thermocline in the West Pacific. Strong deviation in${\delta}^{18}O$ of G. sacculifer from SPECMAP suggests the carbonate fraction of KODOS-313 was subjected to partial dissolution by bottom water under lysocline. Lower accumulation rates of $CaCO_3$ and eolian component during glacial times are likely due to low sedimentation rate (ave. 0.75 cm/1000 yr) combined with carbonate dissolution in KODOS-313 site. However, the high $CaCO_3$ contents during the glacial periods clearly follow the general pattern of equatorial Pacific ocean.

Latitudinal Differences in the Distribution of Mesozooplankton in the Northeastern Equatorial Pacific

  • Kang, Jung-Hoon;Kim, Woong-Seo;Son, Seung-Kyu
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.351-360
    • /
    • 2004
  • To investigate latitudinal variations in the zooplankton community along the meridian line ($5^{\circ}N-12^{\circ}N$, $131.5^{\circ}W$), we measured temperature, salinity, nitrate, chlorophyll-a and zooplankton at depths above 200 m from July $10^{th}$ to $25^{th}$, 2003. For comparative analysis, data of the physico-chemical properties and chl-a were matched to the two sampling depths (surface mixed layer and thermocline depth-200 m) of zooplankton. Latitudinal differences in the mesozooplankton distribution were mainly influenced by divergence formed at a boundary line formed by currents of opposing directions, consisting of North Equatorial Current (NEC) and North Equatorial Counter Current (NECC). High concentrations of chl-a south of $9^{\circ}N$, caused by equatorial upwelling related nutrients, is thought to be affected by the role of this divergence barrier, supported by relatively low concentrations in waters north of $9^{\circ}N$. The latitudinal differences of the chl-a were significantly associated with the major groups of zooplankton, namely calanoid and cyclopoid copepods, appendicularians, ostracods, chaetognaths, invertebrate larvae, and others. And temperature significantly affected the latitudinal variation of radiolarians, siphonophores, salps and immature copepods. The latitudinal differences in the two factors, temperature and chl-a, which explained 71.0% of the total zooplankton variation, were characterized by the equatorial upwelling as well as the divergence at $9^{\circ}N$. The physical characteristics also affected the community structure and abundance of zooplankton as well as average ratios of cyclopoid versus calanoid copepods. The abundance of dominant copepods, which were consistent with chl-a, were often associated with the carnivorous zooplankton chaetognaths, implying the relative importance of bottom-up regulation from physical properties to predatory zooplankton during the study period. These results suggested that latitudinal distribution of zooplankton is primarily controlled by current-related divergences, while biological processes are of secondary importance in the northeastern Equatorial Pacific during the study period in question.

Thermal Structure of the East China Sea Upper Layer Observed by a Satellite Tracked Drifter Experiment (위성추적부이를 이용한 동중국해 상층 수온구조 관측)

  • Lee, Seok;Lie, Heung-Jae;Cho, Cheol-Ho;Song, Kyu-Min;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.361-372
    • /
    • 2008
  • A satellite tracked drifter experiment was conducted to observe thermal structure and surface circulation in the northeastern East China Sea. For this experiment, four ADOS buoys, assembled with surface float and thermister chain, were deployed on August 2007 in southern Jeju-do, where the Kuroshio Branch Current is separated from the main stream. Thermal structure in the upper layer of the northeastern East China Sea was successfully observed during the following $1{\sim}3$ months. Strong thermo-haline front in a northeast-southwest direction was observed. In the frontal zone, warm and saline Kuroshio origin water intermixes with fresher coastal water and flows toward the Korean Strait. Typhoon Nari, which passed over the East China Sea 20 days after commencement of study, caused distinct signals in the thermal structure and trajectory of buoys. During the typhoon, surface temperature abruptly dropped to about $4^{\circ}C$, while the thermocline formed at $30{\sim}50$ m depth vanished due to strong vertical mixing. Internal inertial oscillation occurred several days after the typhoon. The fortuitous occurrence of typhoon Nari showed that ADOS buoys can provide useful and accurate air-sea interaction data during typhoons.

Characteristics of the Oceanographic Environment in the Aleutian Basin of the Bering Sea during Spring (춘계 베링해 알류산 해분의 해양환경 특성)

  • Choi, Seok-Gwan;Oh, Taeg Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.201-215
    • /
    • 2013
  • The characteristics of the oceanographic environment in the Aleutian Basin of the Bering Sea during spring in 1996, 1997, and 1999 were clarified. An investigation of the water properties revealed five basic layers in the Bering Sea during spring: (1) a surface layer of warm and low-salinity water induced by solar heating, (2) a subsurface layer of cold and low-salinity water propagated slowly by heat from the surface layer, (3) a thermocline layer where salinity was constant but temperature sharply decreased, (4) a temperature inversion layer, and (5) a deep layer with a gradual decrease in temperature and increase in salinity toward the bottom. The ranges of water temperature and salinity were $1.8-5.5^{\circ}C$ and 31.81-34.08 in 1996, $1.5-7.2^{\circ}C$ and 31.9-34.06 in 1997, and $0.5-5.6^{\circ}C$ and 32.0-34.11 in 1999, respectively. The water temperature of the surface layer was approximately $1.6^{\circ}C$ higher in 1997 than in 1996 and 1999. The lowest temperature at a depth of 100-150 m was about $1^{\circ}C$ lower in 1999 than in 1996 and 1997. Nutrient levels (nitrate, phosphate, and silicate) contributing to the control of the growth of phytoplankton were higher in the Aleutian Basin than in the eastern continental shelf and Bogoslof Island area. This was closely associated with the phytoplankton distribution. Nutrient concentrations were lowest at a depth of 25 m. The high primary production at that depth was confirmed from the vertical distribution of chlorophyll a. Chlorophyll a levels were above $4.0{\mu}L^{-1}$ in some areas in 1996 and 1999, but below $2.0{\mu}L^{-1}$ in most areas in 1997. Zooplankton density was about three times higher in 1999 than in 1997.

Key Technologies for Floating Type Artificial Upwelling System to Strengthen Primary Production (해역 기초생산력 증대를 위한 부유식 인공용승시스템 요소기술)

  • Jung, Dong-Ho;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Deok-Soo;Lee, Seung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The abundant nutrients contained in deep seawater are delivered by natural upwellings from the deep sea to the surface sea. However, the natural upwelling phenomenon is limited to specific areas of the sea; in other areas, the thermocline separates the surface sea from the lower layer. Thus, the surface layer is often deficient in nutritive salts, causing the deterioration of its primary productivity and ultimately leading to an imbalance in the marine ecosystem. Without a consistent supply of nitrogenous nutritive salts, they are absorbed by phytoplankton, resulting in a considerable problem in primary productivity. To solve this issue, a floating type of artificial upwelling system is suggested to artificially pump up, distribute, and diffuse deep seawater containing rich nutritive salts. The key technologies for developing such a floating artificial upwelling system are a floating offshore structure with a large diameter riser, self-supplying energy system, density current generating system, method for estimating the emission and absorption of CO2, and way to evaluate the primary production variation. Strengthening the primary production of the sea by supplying deep seawater to the sea surface will result in a sea environment with abundant fishery resources.

A precision analysis of Baengnyeongdo Multi-beam echosounder data using acoustic ray theory (음선이론을 이용한 백령도 부근해역 다중빔 수심측량 자료의 수직.수평 오차 분석)

  • You, Seung-Ki;Joo, Jong-Min;Choi, Jee-Woong;Kim, Young-Bae;Jung, Hyun;Kim, Seo-Cheol;Park, Sung-Kyeu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.167-173
    • /
    • 2009
  • Bathymetry survey around the Baengnyeong-do was made by the Korea Hydrographic and Oceanographic Administration (KHOA), using the Simrad EM3000 Multi-Beam EchoSounder (MBES) mounted at the hull of the R/V Badaro 1. Sound velocity were monitored with frequent sound velocity profiler(SVP) casts during the acoustic measurements. The depth distribution and fluctuation of thermocline varied locally owing to the effect of several current flows such as Kuroshio current and Yellow sea coastal waters. These uncertainties cause the falling-off in accuracy of MBES results. In this paper, the bathymetry results will be presented and their accuracy will be discussed along with comparisons to the time and spatial variations in sound velocity profile.

  • PDF

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF

Studies of the Plankton in the Southwestern Waters of the East (Sea of Japan)(III) (東海 西南海域의 플랑크톤(III) 동물플랑크톤 - 현존량, 종조성 및 분포)

  • 심재영;이동섭
    • 한국해양학회지
    • /
    • v.21 no.3
    • /
    • pp.146-155
    • /
    • 1986
  • Zooplankton samples of upper 50m layer in May, 1985 and of various depth intervals depending on thermal structure in October, 1985 were analyzed. Standing stock represents mean of 538inds/㎥ in spring and 267 inds/㎥ and 508inds/㎥ of whole column mean and surface layer in fall, respectively. A total of 55 and 104taxa is identified in each season and accumulated data list at least 123 species inhabiting in the study area. Copepods dominate in the zooplankton community, followed by protozoans and appendicularians in both seasons. In surface layer, distribution of subtropical species and standing stock seems to illuminate the effects of the Tsushima Current and the North Korean Cold Watermass in cold season, whereas only standing stock shows discernable variation in warm season. Concerning whole water column, depth of permanent thermocline bottom, at about 120m in fall 1985, plays significant role as a barrier to the distribution of mesopelagic cold water species. Serial sampling in October, 1985 does not reveal any perceivable diel vertical migration, which is considered to confirm the earlier suggest that owing to the lack of true abyssal species zooplankton biomass of deeper gayer is very poor, so that diel vertical migration of the East Sea is weak.

  • PDF

Effects of Light Quantity and Quality on the Growth of the HarmfulDinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae) (유해성 적조생물, Cochlodinium polykrikoides Margalef (Dinophyceae) 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Yoon, Yang-Ho;Kim, Dae-Il;Shimasaki, Yohei;Oshima, Yuji;Honjo, Tsuneo
    • ALGAE
    • /
    • v.21 no.3
    • /
    • pp.311-316
    • /
    • 2006
  • The effects of light quality and irradiance on the growth of Cochlodinium polykrikoides were investigated in the laboratory. At 25°C and 30 psu the irradiance-growth curve was described as μ = 0.34 (I-9.76)/(I+12.5), (r=0.98). This suggests half-saturation photon flux density (PFD) (Ks) of 32.0 μmol photons m–2 s–1, and a compensation PFD (Ic) of 9.76 μmol photons m–2 s–1. Because the Ic equates to a depth of ca. 15.4 m, these responses suggest that irradiance at the depth around and below the thermocline in Yeosuhae Bay would provide favorable conditions for C. polykrikoides. Photoinhibition did not occur at 300 μmol photons m–2 s–1, which was the maximum irradiance used in this study. Blue (450 nm), yellow (590 nm) and red (650 nm) light had different effects on the growth of C. polykrikoides: it grew well under blue light, but not under yellow light. This implies that C. polykrikoides is more likely to cause an outbreak of red tide in the open sea where blue-green wavelengths predominate, rather than in enclosed water bodies where suspended particles absorb most of the blue wavelengths, and yellow-orange wavelengths predominate.