DOI QR코드

DOI QR Code

Late Pleistocene Paleoceanographic Changes of the West Equatorial Pacific

서태평양 적도 지역의 플라이스토세 후기 고해양 변화

  • Yoo, Chan-Min (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Hyeong, Ki-Seong (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Moon, Jai-Woon (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Kim, Ki-Hyune (Marine Geoenvironment and Resources Research Division, KORDI) ;
  • Chi, Sang-Bum (Marine Geoenvironment and Resources Research Division, KORDI)
  • 유찬민 (한국해양연구원 해저환경.자원연구본부) ;
  • 형기성 (한국해양연구원 해저환경.자원연구본부) ;
  • 문재운 (한국해양연구원 해저환경.자원연구본부) ;
  • 김기현 (한국해양연구원 해저환경.자원연구본부) ;
  • 지상범 (한국해양연구원 해저환경.자원연구본부)
  • Published : 2004.06.30

Abstract

To delineate Late Pleistocene paleoceanographic change of the West Pacific, we analyzed the oxygen and carbon isotopic ratios of two planktonic foraminifera species (G. sacculifer and N. dutertrei) from a piston core (KODOS-313) taken from the West equatorial Pacific, and they are compared with the published results of the East Pacific (ODP site 847 and RC 11-210), in terms of relative amounts and mass accumulation rates of $CaCO_3$ and eolian component, back to marine isotopic stage (MIS) 6. Differences in oxygen and carbon isotope values between two foraminifear species ($0.75%_{\circ}$ in ${\delta}^{18}O$, $0.05%_{\circ}$ in ${\delta}^{13}C$) are less than those of the East Pacific ($1.30%_{\circ}$ in ${\delta}^{18}O$, $0.14%_{\circ}$ in ${\delta}^{13}C$), which indicates smaller vertical contrasts in both temperature and nutrient between mixing-zone and thermocline in the West Pacific. Strong deviation in${\delta}^{18}O$ of G. sacculifer from SPECMAP suggests the carbonate fraction of KODOS-313 was subjected to partial dissolution by bottom water under lysocline. Lower accumulation rates of $CaCO_3$ and eolian component during glacial times are likely due to low sedimentation rate (ave. 0.75 cm/1000 yr) combined with carbonate dissolution in KODOS-313 site. However, the high $CaCO_3$ contents during the glacial periods clearly follow the general pattern of equatorial Pacific ocean.

Keywords

References

  1. Adelseck, C.G., Jr. and T.F. Anderson. 1978. The late Pleistocene record of productivity fluctuations in the late eastern equatorial Pacific Ocean. Geology, 6, 388-391. https://doi.org/10.1130/0091-7613(1978)6<388:TLPROP>2.0.CO;2
  2. Arrhenius, G. 1952. Sediment cores from the east Pacific: Properties of the sediments. Reports of the Swedish deep-sea expedition 1947-1948 I. 1-228.
  3. Be, A.W.H., J.K.B. Bishop, M.S. Swerdlove, and W.D. Gardner. 1985. Standing stock, vertical distribution and flux of planktonic foraminifera in the Panama Basin. Mar. Micropaleontol., 9, 307-333. https://doi.org/10.1016/0377-8398(85)90002-7
  4. Cannariato, K.G. and A.C. Ravelo. 1997. Pliocene-Pleistocene evolution of eastern tropical Pacific surface water circulation and thermocline depth. Paleoceanography, 12, 805-820. https://doi.org/10.1029/97PA02514
  5. Chen, M.-T., L.-J. Shiau, P.-S. Yu, T.-C. Chiu, Y.-G. Chen, and K.-Y. Wei. 2003. 500,000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature Island). Palaeogeogra. Palaeoclimatol. Palaeoecol., 197, 113-131. https://doi.org/10.1016/S0031-0182(03)00389-4
  6. Chuey, J.M., D.K. Rea, and N.G. Pisias. 1987. Late Pleistocene paleoclimatology of the central equatorial Pacific: A quantitative record of eolian and carbonate deposition. Quat. Res., 28, 323-339. https://doi.org/10.1016/0033-5894(87)90001-9
  7. Curry, W.B., R.C. Thunell, and S. Honjo. 1983. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth Planet. Sci. Lett., 64, 33-43. https://doi.org/10.1016/0012-821X(83)90050-X
  8. Emiliani, C. 1955. Pleistocene temperatures. J. Geol., 63, 538-578.
  9. Erez, J. and B. Luz. 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochim. Cosmochim. Acta, 47, 1025-1031. https://doi.org/10.1016/0016-7037(83)90232-6
  10. Fairbanks, R.G., M. Sverdlove, R. Free, P.H. Wiebe, and A.W.H. Be. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298, 841-844. https://doi.org/10.1038/298841a0
  11. Farrell, J.W. and W.L. Prell. 1989. Climatic change and $CaCO_{3}$ preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 4, 447-466. https://doi.org/10.1029/PA004i004p00447
  12. Farrell, J.W. and W.L. Prell. 1991. Pacific $CaCO_{3}$ preservation and $\delta^{18}O$ since 4 Ma: Paleoceanic and paleoclimatic implications. Paleoceanography, 6, 485-498. https://doi.org/10.1029/91PA00877
  13. Farrell, J.W., D.W. Murray, V.S. McKenna, and A.C. Ravelo. 1995. Upper ocean temperature and nutrient contrasts inferred from Pleistocene planktonic foraminirer $\delta^{18}O$ and $\delta^{13}O$ in the eastern equatorial Pacific. p. 289-319. In: Proceedins of the ocean drilling program, scientific results, 128. eds. by N.G. Pisias, L.A. Janecek, A. Palmer-Julson, and T.H. van Andel.
  14. Hovan, S.A., D.K. Rea, and N.G. Pisias. 1991. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography, 6, 349-370. https://doi.org/10.1029/91PA00559
  15. Imbrie, J., J.D. Hays, D.G. Martinson, A. McIntyre, and N.J. Shackleton. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine $\delta^{18}O$ record. Part 1. p. 269-305. In: Milankovich and climate. eds. by A. Berger, J. Imbrie, J. Hays, G. Kuklar, and B. Saltzman. Reidel, Dordrecht.
  16. Janecek, T.R. and D.K. Rea. 1985. Quaternary fluctuation in the Northern Hemisphere trade winds and westerlies. Quat. Res., 24, 150-163. https://doi.org/10.1016/0033-5894(85)90002-X
  17. Le, J. and N.J. Shankleton. 1992. Carbonate dissolution fluctuations in the western equatorial Pacific during the later Quaternary. Paleoceanography, 7, 21-42. https://doi.org/10.1029/91PA02854
  18. Leinen, M. and G.R. Heath. 1981. Sedimentary indicators of atmospheric circulation in the northern hemisphere during the Cenozoic. Palaeogeogra. Palaeoclimatol. Palaeoecol., 36, 1-21.
  19. Lyle, M., A. Mix, and N. Pisias. 2002. Patterns of $CaCO_{3}$ deposition in the eastern tropical Pacific Ocean for the last 150 kyr: Evidence for a southeast Pacific depositional spike during marine isotope stage (MIS) 2. Paleoceanography, 17, 3-1-3-14.
  20. Martinson, D.G., N.G. Pisias, J.D. Hays, J. Imbrie, T.C. Moore, and N.J. Shackleton. 1987. Age dating and the orbital theory of the ice ages: development of a high resolution 0-300,000 year chronostratigraphy. Quat. Res., 27, 1-29. https://doi.org/10.1016/0033-5894(87)90046-9
  21. Murray, D.W., J.W. Farrell, and V. McKena. 1995. Biogenic sedimentation at site 847, eastern equatorial Pacific Ocean, during the past 3 M.Y. p. 429-459. In: Proceedins of the ocean drilling program, scientific results, 128. eds. by N.G. Pisias, L.A. Janecek, A. Palmer-Julson, and T.H. van Andel.
  22. Patrick, A.P. and R.C. Thunell. 1997. Tropical Pacific sea surface temperatures and upper water column thermal structure during the last glacial maximum. Paleoceanography, 12, 649-657. https://doi.org/10.1029/97PA01553
  23. Pisias, N.G. and D.K. Rea. 1988. Late Pleistocene paleoclimatology of the central equatorial Pacific: sea surface response to the southeast Trade Winds. Paleoceanography, 3, 21-37. https://doi.org/10.1029/PA003i001p00021
  24. Rea, D.K. and T.R. Janecek. 1981. Mass accumulation rates of non-authigenic inorganic crystalline (eolian) component of deep sea sediments from the western Mid-Pacific Mountains. p. 653-659. In: Initial reports of the deep sea drilling project, 62. eds. by J. Thiede and T.L. Vallier.
  25. Rea, D.K., M. Leinen, and T.R. Janecek. 1985. A geologic approach to the long-term history of atmospheric circulation. Science, 227, 721-725. https://doi.org/10.1126/science.227.4688.721
  26. Shackleton, N.J. 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature, 218, 15-17.
  27. Spero, H.J., K.M. Mielke, E.M. Kalve, D.W. Lea, and D.K. Pak. 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 18, 22-1-22-16.
  28. Thompson, P.R. and T. Saito. 1974. Pacific Pleistocene sediments: Planktonic foraminifera dissolution cycles and geochronology. Geology, 2, 333-335. https://doi.org/10.1130/0091-7613(1974)2<333:PPSPFD>2.0.CO;2
  29. Wu, G. and W.H. Berger. 1989. Planktonic foraminifera: differential dissolution and the Quaternary stable isotope record in the west-equatorial Pacific. Paleoceanography, 4, 181-198. https://doi.org/10.1029/PA004i002p00181
  30. Wu, G. and W.H. Berger. 1991. Pleistocene $\delta^{18}O$ records from Ontong-Java Plateau: effects of winnowing and dissolution. Mar. Geol., 96, 193-209. https://doi.org/10.1016/0025-3227(91)90147-V
  31. Wu, G., J.C. Herguera, and W.H. Berger. 1990. Differntial dissolution: modification of late Pleistocene oxygen isotope records in the western equatorial Pacific. Paleoceanography, 5, 581-594. https://doi.org/10.1029/PA005i004p00581