• 제목/요약/키워드: Thermochemical model

검색결과 22건 처리시간 0.028초

Rovibrational Nonequilibrium of Nitrogen Behind a Strong Normal Shock Wave

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.28-37
    • /
    • 2017
  • Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperatures. In the present work, in order to analyze rovibrational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered as an equilibrium mode in two- and multi-temperature models. Then, the translational, rotational, and electron-electronic-vibrational modes are considered separately in describing the thermochemical nonequilibrium of nitrogen behind a strong normal shock wave. The energy transfer for each energy mode is described by recently evaluated relaxation time parameters including the rotational-to-vibrational energy transfer. One-dimensional post-normal shock flow equations are constructed with these thermochemical models, and post-normal shock flow calculations are performed for the conditions of existing shock-tube experiments. In comparisons with the experimental measurements, it is shown that the present thermochemical model is able to describe the rotational and electron-electronic-vibrational relaxation processes of nitrogen behind a strong shock wave.

SI 열화학 수소 생산 공정의 분석을 위한 열역학 모델의 적용 (Application of Thermodynamic Models for Analysis on SI Thermochemical Hydrogen Production Process)

  • 이준규;김기섭;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제2권2호
    • /
    • pp.30-34
    • /
    • 2012
  • The SI thermochemical cycle process accomplishes water splitting through distinctive three chemical reactions. We focused on thermodynamic models applicable to the process. Recently, remarkable models based on the assumed ionic species have been developed to describe highly nonideal behavior on the liquid phase reactions. ElecNRTL models with ionic reactions were proposed in order to provide reliable process simulation results for phase equilibrium calculations in Section II and III. In this study, the current thermodynamic models of SI thermochemical cycle process were briefly described and the calculation results of the applied ElecNRTL models for phase equilibrium calculations were illustrated for binary systems.

  • PDF

SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산 (Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process)

  • 이평종;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.

저급탄 가스화기 선정 평가 연구 (A Study on Evaluating the Selection of Low Rank Coal Gasifier)

  • 김철웅;임호;김량균;송주헌;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.567-580
    • /
    • 2015
  • In order to select an optimum gasifier for specific low rank coal, evaluation elements were studied by analyzing characteristics of low rank coal compared with those of high rank coal and the effects of each gasifier type in accordance with the characteristics. And syngas composition calculation model was made on the basis of thermochemical equilibrium to quantify some of the evaluation elements. And then the suitable gasifier was selected for a kind of Indonesian low rank coal through this syngas composition calculation model and the evaluation elements of selecting gasifier.

열역학적 평형모델을 이용한 바이오매스 연료조건에 따른 합성가스 조성의 예측 (Estimation of Synthesis Gas Composition by Biomass Fuel Conditions using Thermodynamic Equilibrium Model)

  • 홍성구
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.79-87
    • /
    • 2015
  • A thermochemical equilibrium model was constructed for predicting composition of synthesis gas in biomass gasification. The model included estimation of equilibrium constants using Gibbs free energy. After constructing the model, the results were compared with the experimental values and predictions from a previous model. Gas compositions were reasonably well agreed with them and showed effects of operational and fuel condition. When the reaction temperature increased, the lower heating values decreased due to the decrease in CH4 concentrations. The methane concentrations were lower than those observed in experimental results. The model was used to predict the gas composition and heating values for the cases of mixed fuel of charcoal and un-dry woodchips. Although downdraft gasifiers require fuels less than 15% of moisture contents, the model results indicated that the mixed fuel with charcoal and woodchips which had over 25% of moisture contents could be used in the downdraft gasifiers. It might be explained by increase in energy density resulting from mixing charcoal. The results imply that the efforts and costs for drying biomass fuels could be reduced by mixing charcoal or fuels with higher calorific values.

Integrated Thermochemical Approach to Collision-Induced Dissociation Process of Peptides

  • Shin, Seung Koo;Yoon, Hye-Joo
    • Mass Spectrometry Letters
    • /
    • 제12권4호
    • /
    • pp.131-136
    • /
    • 2021
  • Collision-induced dissociation of peptides involves a series of proton-transfer reactions in the activated peptide. To describe the kinetics of energy-variable dissociation, we considered the heat capacity of the peptide and the Marcus-theory-type proton-transfer rate. The peptide ion was activated to the high internal energy states by collision with a target gas in the collision cell. The mobile proton in the activated peptide then migrated from the most stable site to the amide oxygen and subsequently to the amide nitrogen (N-protonated) of the peptide bond to be broken. The N-protonated intermediate proceeded to the product-like complex that dissociated to products. Previous studies have suggested that the proton-transfer equilibria in the activated peptide affect the dissociation kinetics. To take the extent of collisional activation into account, we assumed a soft-sphere collision model, where the relative collision energy was fully available to the internal excitation of a collision complex. In addition, we employed a Marcus-theory-type rate equation to account for the proton-transfer equilibria. Herein, we present results from the integrated thermochemical approach using a tryptic peptide of ubiquitin.

바나듐의 고효율 회수를 위한 배소 전처리용 Rotary kiln 내 열화학적 모델인자 (Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery)

  • 이상훈;정경우
    • 자원리싸이클링
    • /
    • 제31권2호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 연구에서는 Rotary kiln(RK)을 이용하여 바나듐 염배소 전처리시 적정온도를 유지하기 위한 열화학적 모델링 관련 인자에 대해 논의하였다. 관련 모델 메카니즘은 열화학 관련 반응속도모델, 열수지 및 열전달 등이며 이를 통해 rotary kiln내 온도분포를 직관적으로 추정할 수 있다. 이러한 작업을 통해 최적 염배소 온도인 1000 ℃(또는 약 1273 K) 근방을 kiln내에서 장기간 유지하는 것이 관건이다. 본 연구에서는 탄화수소(천연가스) 연료연소 및 광석 산화반응으로부터의 발열과 광석으로의 복사열전달 등을 산정하였다. 또한 열화학 측면에서 Rotary kiln내 적정 배소온도구역에서의 온도구배 완화를 위한 방안을 제시하였다.

흑연 노즐목 내열재의 열화학적 침식 특성 분석 (Analysis on Thermochemical Erosion Properties for Thermal Insulation Materials of Graphite Nozzle Throat)

  • 김영인;이수용
    • 한국항행학회논문지
    • /
    • 제22권2호
    • /
    • pp.90-95
    • /
    • 2018
  • 로켓 (rocket)이란 배출가스를 빠르게 분사하여 그 반작용의 힘으로 추진력을 발생시키는 추진 장치이다. 그리고 고체추진 로켓 (solid rocket motor)의 구조에서 노즐(nozzle)은 추력을 발생시키는 중요한 구성품으로 고온/고압 환경으로 인하여 연소되며 액체로켓 (liquid rocket propulsion systems)과 다르게 노즐을 냉각시킬 수 없어 연소가스에 의해 침식 (erosion)이 발생한다. 본 논문은 oxy-acetylene torch tester를 개발 및 이용하여 흑연 (graphite) 재질의 노즐목 (nozzle throat) 내열재에 대하여 열화학적 침식 특성을 실험 및 이론적 모델로 규명하고 이를 통하여 침식에 영향을 미치는 주요 인자에 대하여 연구하였다.

Aero-optical effects in the hypersonic flow field

  • Shi, Ketian;Miao, Wenbo;Li, Pengfei;Chen, Xiaoli
    • International Journal of Aerospace System Engineering
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 2015
  • Aero-optical effects induced by the flow around the optical window degrade the performance of the IR seeker, especially for the hypersonic flow. For the thermochemical non-equilibrium flow, index of refraction model and optical transmission calculation method are developed to predict the aero-optical effects. The optical distortion is discussed for the typical optical widow shape and flow condition. The influence on aero-optical effects is analyzed.

불꽃점화 반켈 로터리 기관의 성능 시뮬레이션 (A Performance Simulation for Spark Ignition Wankel Rotary Engine)

  • 채재우;이상만;전영남;김규정;정영식
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.80-89
    • /
    • 1993
  • Performance simulation for a Spark Ignition Wankel rotary Engine is presented in this paper. The volume of chamber at each eccentric shaft angle is evaluated by using geometric models of housing and rotor. A thermodynamic model which includes the first law of thermodynamics, combustion and convective heat transfer from chamber contents to surroundings is imployed. A thermochemical equilibrium model which considers 10 species(CO, $CO_2$, $O_2$, $H_2$, $H_2O$, OH, O, NO, $N_2$) in the burned gas region, is also employed. Four processes of gas exchange, compression, combustion and expansion are considered and the pressure, temperature and composition of chamber gas at each eccentric shaft angle in each process are computed in this performance simulation. This performance simulation must be useful for optimal design of Spark Ignition Wankel Rotray Engine with parametric study for various design parameters and operating conditions.

  • PDF