• Title/Summary/Keyword: Thermochemical Process

Search Result 132, Processing Time 0.026 seconds

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

Suggestion of nuclear hydrogen supply by analyzing status of domestic hydrogen demand (국내 수소 수요현황 파악을 통한 원자력 수소의 공급 용량 예측 안)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Oh, Jeon-Keun;Yoon, Young-Seek
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2006
  • Hydrogen is used as a chemical feedstock in several important industrial processes, including oil refineries and petro-chemical production. But, nowadays hydrogen is focused as energy carrier on the rising of problems such as exhaustion of fossil fuel and environmental pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases, and research of nuclear hydrogen, therefore, has been worked with goal to demonstrate commercial production in 2020. The oil refineries and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and high-potential early market for hydrogen produced by nuclear energy. Therefore, it is essential to investigate and analyze for state of domestic hydrogen market focused on industrial users. Hydrogen market of petro-chemical industry as demand site was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics and then it can be provided basis for determination of optimal capacity of nuclear hydrogen plant in 2020.

Characteristic of heat storage/release in chemical heat pump using the calcined dolomite (소성 Dolomite를 이용한 화학열펌프내의 축·방열특성)

  • Hong, Min-Hyuk;Lee, Young-Sei;Choi, Hyun-Kuk;Park, Young-Hea;Kim, Jong-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.191-196
    • /
    • 2005
  • This study was carried out to investigate the heat storage/release characteristics of the thermochemical reaction of the calcined dolomite with the packed bed shape experimental apparatus for development of chemical heat pump system. In the present study, it was found that MgO of the calcined dolomite was not hydrated during the hydration process under the experimental conditions. Therefore, the MgO of the calcined dolomite can be regard as an inert material. As a result, it was found that all of CaO packed kept the reaction temperature of about $510^{\circ}C$ through the entire part of the bed. The dehydration reaction was incurred first at the wall side area as the supplied heat was transferred through the wall side into the packed bed. As a result of the temperature and concentration spread, the reaction was completed at the wall side progressed into the center.

  • PDF

The Interior ballistic Properties of non-solvent double based gun propellants (무용제 복기 화포 추진제의 강내탄도 특성)

  • 이정환;권순길;황준식;이해석;김구일;최병오
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • JA2 Propellants, made by non-solvent process, are of great interest for the tank gun propellant. This is due to high energy. The grain geometries of JA2 and modified JA2 propellant were designed for application to 105mm APFSDS projectile. The combustion, thermochemical, and interior ballistic properties of the propellant were tested and calculated. The performances of the propellant were evaluated out using 105mm slug T2 projectiles and 105mm tank gun. The muzzle velocity of the propellants was higher than that of the KM30 for K274 projectile.

  • PDF

Analysis of Hydrogen Production Cost by Production Method for Comparing with Economics of Nuclear Hydrogen (원자력 수소 경제성 비교를 위한 수소 생산 방법별 생산단가 분석)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Yoon, Young-Seek
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.218-226
    • /
    • 2006
  • It can be obtained from hydrocarbon and water, specially production of hydrogen from natural gas is most commercial and economical process among the hydrogen production methods, and has been used widely. However, conventional hydrogen production methods are dependent on fossil fuel such as natural gas and coal, and it may be faced with problems such as exhaustion of fossil fuels, production of greenhouse gas and increase of feedstock price. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases. However, nuclear hydrogen must be economical comparing with conventional hydrogen production method. Therefore, hydrogen production cost was analyzed and estimated for nuclear hydrogen as well as conventional hydrogen production such as natural gas reforming and coal gasification in various range.

A Study on the Cyclic Oxidation Properties of Aluminum Diffusion Coated Materials (알루미늄 확산코팅재료의 주기산화 특성에 관한 연구)

  • 강석철;민경만;김길무
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-60
    • /
    • 1999
  • The protective oxide scales and coatings formed on high temperature materials must be preserved in high temperature atmosphere. And the thermal stresses induced by thermal cycling and the growth stresses by the formation of oxide scales can cause the loss of adherence and spalling of the oxide scales and coated layers. Among the coating processes Al diffusion coating is favored due to thermochemical stability and superior adherence in an hostile atmosphere. In this study, protective oxide forming element, Al was coated on Ni, Inconel 600 and 690 by diffusion coating process varying coating temperature and time. And the surface stability and adherence of oxide scales formed on those Al diffusion coated materials were evaluated by thermal cycling test. Al diffusion coated specimens showed superior cyclic oxidation resistance compared to bare ones and specimens coated for longer period had better cyclic oxidation resistance, due to the abundant amount of Al in the coated layer. Meanwhile Al diffusion coated Inconel 600 and 690 showed improved cyclic oxidation resistance by the effect of Al in the coated layer and Cr in the substrate. Comparing both Al diffusion coated Inconel 600 and 690, Al diffusion coated Inconel 690 maintained better adhesion between coated layer and substrate by virtue of the bridging effect resulting from the segregation of Cr in the interdiffusion zone.

  • PDF

A Study on the Characteristics of the Biochar by Hydrothermal Carbonization with Food Waste (열수가압탄화법(HTC, Hydrothermal Carbonization)에 의한 음식물 폐기물 biochar의 특성 연구)

  • Cho, Woo Ri;Oh, Minah;Chung, Wonduck;Park, Seong-Kyu;Bae, Sunyoung;Lee, Jai-young
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2016
  • Hydrothermal carbonization (HTC) is a carbonization method of thermochemical process at a relatively low temperature (180-250℃). It is reacted by water containing raw material. In this study, it was selected for effective disposal method of food waste because food waste in Korea has large amount water. 5 kg, 10 kg, 15 kg of food waste were reacted for 6 hours at 200℃ for selecting the optimum amount of raw material. Since the derived optimum amount, food waste was reacted for 2 hours, 4 hours and 6 hours at 200℃ and 1.5 MPa. After carbonization, it was analyzed to evaluated the properties by ultimate analysis, iodine adsorption, BET surface area and SEM. After analyzing the characteristics, it can be utilized as a basic data for applied.

The Study on Bunsen Reaction Process for Iodine-Sulfur Thermochemical Hydrogen Production (요오드-황 열화학 수소 제조를 위한 분젠 반응 공정 연구)

  • Kang, Young-Han;Ryu, Jae-Chun;Park, Chu-Sik;Hwang, Gab-Jin;Lee, Sang-Ho;Bae, Ki-Kwang;Kim, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.410-416
    • /
    • 2006
  • For highly efficient operation of a Bunsen process section in an iodine-sulfur thermochemical hydrogen production cycle using nuclear heat, the process characteristics of $H_2SO_4-HI-H_2-O-I_2$ mixture system for separating into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) and the distribution of $H_2O$ to each phase were investigated.The experiments for process variables were carried out in the temperature range, from 298 to 353 K, and in the $H_2SO_4/HI/H_2O/I_2$ molar ratio of 1/2/14~20/0.5~8.0. As the results, for the $SO_2-I_2-H_2O$ Bunsen reaction system, the ranges between the starting point and the saturation point for two liquid phases separation were determined by calculation. The best result for the minimization of impurities (HI and $I_2$ in $H_2SO_4$ phase and $H_2SO_4$ in $HI_x$ phase) in each phase was obtained in an optimum condition with the highest temperature of 353 K and the highest $I_2$ molar composition. In this condition, the $HI/H_2SO_4$ molar ratio in the $H_2SO_4$-rich phase and the $H_2SO_4/HI_x$ molar ratio in the $HI_x$-rich phase were 0.024 and 0.028, respectively. For the distribution of $H_2O$ to each phase, it is appeared that the affinity between $HI_x$ and $H_2O$ was more superior to that between $H_2SO_4$ and $H_2O$. The affinity between $HI_x$ and $H_2O$ was decreased with increasing temperature but increased with increasing $I_2$ molar composition.

Corrosion Characteristics of Fe-Si, Ni-Ti and Ni Alloy in Sulfuric Acid Environments (황산 환경에서 Fe-Si, Ni-Ti계 및 Ni 합금의 내부식성 특성)

  • Kwon, Hyuk-Chul;Kim, Dong-Jin;Kim, Hong-Pyo;Park, Ji-Yeon;Hong, Seong-Deok
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Methods of producing hydrogen include steam reforming, electrochemical decomposition of water, and the SI process. Among these methods, the Sulfur iodine process is one of the most promising processes for hydrogen production. The thermochemical sulfur-iodine (SI) process uses heat from a high-temperature-gas nuclear reactor to produce $H_2$ gas; this process is known for its production of clean energy as it does not emit $CO_2$ from water. But the SI-process takes place in an extremely corrosive environment for the materials. To endure SI environments, the materials for the SI environment will have to have strong corrosion resistance. This work studies the corrosion resistances of the Fe-Si, Ni-Ti and Ni Alloys, which are tested in SI-process environments. Among the SI-process environments, the conditions of boiling sulfuric acid and decomposed sulfuric acid are selected in this study. Before testing in boiling sulfuric acid environments, the specimens of Fe-4.5Si, Fe-6Si, Ni-4.5Si, Ni-Ti-Si-Nb and Ni-Ti-Si-Nb-B are previously given heat treatment at $1000^{\circ}C$ for 48 hrs. The reason for this heat treatment is that those specimens have a passive film on the surface. The specimens are immersed for 3~14 days in 98wt% boiling sulfuric acid. Corrosion rates are measured by using the weight change after immersion. The corrosion rates of the Fe-6Si and Ni-Ti-Si-Nb-B are found to decrease as the time passes. The corrosion rates of Fe-6si and Ni-Ti-Si-Nb-B are measured at 0.056 mm/yr and 0.16 mm/yr, respectively. Hastelloy-X, Alloy 617, Alloy 800H and Haynes 230 are tested in the decomposed sulfuric acid for one day. Alloy 800H was found to show the best corrosion resistance among the materials. The corrosion rate of Alloy 800H is measured at -0.35 mm/yr. In these results, the corrosion resistance of materials depends on the stability of the oxide film formed on the surface. After testing in boiling sulfuric acid and in decomposed sulfuric acid environments, the surfaces and compositions of specimens are analyzed by SEM and EDX.