• Title/Summary/Keyword: Thermocapillary Flow

Search Result 18, Processing Time 0.022 seconds

A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity (TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명)

  • Eom, Young-Kyoon;You, Jae-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface. (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.139-144
    • /
    • 2003
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the melt pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.1-8
    • /
    • 2005
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the molten pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

Modelling of transport phenomena and meniscus shape in Czochralski growth of silicon material

  • Bae, Sun-Hyuk;Wang, Jong-Hoe;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.454-458
    • /
    • 1999
  • Hydrodynamic Thermal Capilary Model developed previously has been modified to study the transport phenomena in the Czochralski process. Our analysis is focused on the heat transfer in the system, convection in the melt phase, and the meniscus and interface shape. Four major forces drive melt flow in the crucible, which include thermal buoyancy force in the melt, thermocapillary force along the curved meniscus, crucible rotation and crystal rotation. Individual flow mechanism due to each driving force has been examined to determine its interaction with the meniscus and interface shape. A nominal 4-inch-diameter silicon crystal growth process is chosen as a subject for analysis. Heater temperature profile for constant diameter crystal is also present as a function of crystal height or fraction solidified.

  • PDF

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.

Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity (모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성)

  • 이진호;이동진;전창덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

Effect of non-uniform magnetic field on the thermal behavior and mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (Magnetic Czochralski 실리콘 단결정 성장에서 열 및 유체유동과 질량전달에 미치는 비균일 자장의 효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.555-562
    • /
    • 1998
  • Under the influence of non-uniform magnetic field, melt flow in steady state and oxygen concentration in unsteady state are numerically investigated. The strength of the applied characteristic magnetic fields are B=0.1T, 0.2T, and 0.3T, respectively. The buoyancy effects due to the crucible wall heating and the thermocapillary effects due to the surface tention at the free surface are suppressed differentially by the non-uniform magnetic fields. As the intensity of characteristic magnetic fields is increasing, the recirculation region in the meridional plane is moving toward the growing crystal, and is diminishing. The oxygen concentration on the growing surface of crystals is decreasing and the uniformity of the oxygen concentration is increasing as the intensity of the magnetic fields is increasing.

  • PDF

Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon (Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The effect of the buyancy and thermocapillarity for differnent aspect ratio of flow field on melt motion and mass transfer has been numerically investigated in magnetic Czochralski crystal growth of silicon. During the process of crystal growth, the melt depth of crucible reduces so the aspect ratio of flow field also reduces. Therefore the shape of magnetic field of the flow field changes and the flow pattern also changes significantly. Together with the melt flow which forms the Marangoni convection (or thermocapillary flow) that comes from the inside the flow field, a flow circulation is observed near the corner close both to the crucible wall and the free surface. Due to this circulation, buoyancy effect has been turned out to be local rather than global. As the aspect ratio decreases, the radial component of the magnetic field prevails compared with the axial component in the flow field. Under the influence of this magnetic field, the melt flow and the temperature distribution in a meridional plane tend to depend on the radial position. As the aspect ratio decreases, the temperature gradient near the edge of the crystal decreases yielding smaller thermocapillarity, and the oxygen concentration near the crystal and the oxygen incorporation rate also decrease.

  • PDF