• 제목/요약/키워드: Thermo-mechanical fatigue

검색결과 62건 처리시간 0.026초

1.5Cr-0.67Mo-0.33V강의 열피로 크랙전파 거동 (Thermo-Mechanical Fatigue Crack Propagation Behaviors of 1.5Cr-0.67Mo-0.33V Alloy)

  • 송삼홍;강명수
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2133-2141
    • /
    • 1995
  • The thermo-mechanical fatigue tests were performed on the specimens extracted from 1.5Cr-0. 67Mo-0.33V alloy. The characteristics of thermo-mechanical fatigue crack propagation were examined and reviewed in view of fracture mechanics. The results obtained from the present study are summarized as follows : (1) The propagation characteristics of isothermal low-cycle fatigue crack are dominated by .DELTA.J$_{f}$ in case of PP waveform, and .DELTA.J$_{c}$ in case of CP waveform. (II)The propagation characteristics of thermo-mechanical fatigue crack are dominated by .DELTA.J$_{c}$ for in-phase case, and by .DELTA.J$_{c}$ for out-of-phase. The present results were in good agreement with the equation of propagation law for isothermal low-cycle fatigue crack in case of thermo-mechanical fatigue.tigue.e.

가스터빈 블레이드용 IN738LC의 열기계피로수명에 관한 연구 (Thermo-Mechancal Fatigue of the Nickel Base Superalloy IN738LC for Gas Turbine Blades)

  • 에릭 플러리;하정수;현중섭;장석원;정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.188-193
    • /
    • 2000
  • A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue(TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. In the first phase of the study, out-of-phase and in-phase TMF experiments have been performed on uncoated and coated materials. In the temperature range investigated. the deposition of NiCrAlY air plasma sprayed coating did not affect the fatigue resistance. In the second phase of the study, a physically-base life prediction model that takes into account of the contribution of different damage mechanisms has been applied. This model was able to reflect the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives.

  • PDF

구리 TSV의 열기계적 신뢰성해석 (Thermo-mechanical Reliability Analysis of Copper TSV)

  • 좌성훈;송차규
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

열 및 열-기계적 피로에 의한 내열합금 표면의 홈의 형상변화 (Morphological Change of the Surface Groove on a Heat Resistant Alloy Due to Thermal and Thermo-Mechanical Cycling)

  • 이봉훈;선신규;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.11-16
    • /
    • 2007
  • The existence of grooves on the surface of bond coat has significant effect on the instability of thermal barrier system. In this work, the thermal-mechanical fatigue experiments were performed under various thermal and mechanical loads for FeCralloy specimens with and without yttrium dopant to observe the deformation of surface grooves. The effect of temperature, fatigue load and the ratio of curvature on the deformation of grooves were investigated. As the results, it has been found that the higher load level and the higher curvature ratio induces the larger deformation near the grooves. However, the addition of yittrium dopant induces the adverse results.

  • PDF

열-기계하중 적용 속도 변화에 따른 터빈휠의 수명 변화 연구 (A Study on the influence of the rate of thermo-mechanical loads on the fatigue of turbine wheel)

  • 박훤;김현재;김지수;신동익;류시양;신종섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.245-247
    • /
    • 2017
  • 가스터빈 시동 시 터빈휠은 급격한 온도 변화와 원심하중을 받게 된다. 터빈휠 온도와 응력은 빠르게 증가하게 되며, 적용되는 시점과 정도가 서로 다를 수 있다. 온도 및 원심력 적용 속도 차이에 따른 수명 변화를 연구하기 위해서 열-기계피로 유한요소해석을 수행하였다. 시동 시 터빈휠 속도가 천천히 증가하고, 중단 시 천천히 감속하면 상대적으로 수명이 길어진다. 만약 속도 감소가 냉각속도보다 빠르면 오히려 수명이 증가한다.

  • PDF

TMCP 고장력강 용접부의 피로 특성에 관한 연구 (Fatigue properties of welded joints for TMCP steels)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • 제8권2호
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

Characteristics of Corrosion Fatigue of High Strength Steel for Marine Weld Structure

  • Choi, Seong-Dae;Kubo, Takeo;Misawa, Hiroshi;Lee, Jong-Hyung;Song, Dug-Jung
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.53-60
    • /
    • 2003
  • Large sized marine structures are used under corrosion environment of seawater and applied by severe service loading such as an ocean current, a billow and a tempest. Marine structures are usually constructed by lots of thick wall steel pipes joining welded joints. The thickness of such as steel pipes is usually more than 40mm. The such as steels are called "Thermo-Mechanical Control Process steel (TMCP steel)" strengthened by a heat treatment in process of steel manufactures. The failure, especially crack initiation, of marine structures was starting at weld joints under service condition. Then they should be designed by basis of the fatigue strength under seawater corrosion environment of weld joints. To clarity the fatigue crack initiation behavior is important more than to clarify the crack propagation behavior on the strength design of marine structures, because it is very difficult to find out the crack initiation and propagation phenomena and then even if it will be able to find out, it is considered that the refit of the damaged parts of welded joints have a technical difficulty under the sea. Therefore, it is most important to clarify the corrosion fatigue crack initiation behavior under the seawater condition. But, there is one big difficulty to make a test for thick plate specimen, for example thicker than 40mm. Because, it is need large capacity loading apparatus to test such as thick plate specimen. In this research, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the fatigue clack initiation tests with relatively low cyclic loading and to observe a fatigue crack initiation behavior.

  • PDF

Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동 (Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel)

  • 오용준;박중철;양원존
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

The effect of thermo-mechanical fatigue on the retentive force and dimensional changes in polyetheretherketone clasps with different thickness and undercut

  • Guleryuz, Aysegul;Korkmaz, Cumhur;Sener, Ayse;Tas, Mehmet Ozan
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.304-315
    • /
    • 2021
  • PURPOSE. Esthetic expectations have increased the use of polyetheretherketone (PEEK) clasps as alternatives to Cr-Co in removable partial dentures (RPDs). The objective of this study was to evaluate the retentive force and dimensional change of clasps with different thickness and undercut made from PEEK by the thermo-mechanical fatigue. MATERIALS AND METHODS. PEEK clasps (N = 48) with thicknesses of 1 or 1.50 mm and 48 premolar monolithic zirconia crowns with undercuts of 0.25 mm or 0.50 mm were fabricated. Samples are divided into four groups (C1-C4) and were subjected to 7200 thermal aging cycles (at 5 - 55℃). The changes in the retentive force and dimensions of the clasps were measured by micro-stress testing and micro-CT devices from five measurement points (M1 - M5). One-way ANOVA, paired t-test, two-way repeated ANOVA, and post-hoc tests were used to analyze the data (P < .05). RESULTS. The retentive forces of C1, C2, C3, and C4 groups in initial and final test were found to be 4.389-3.388 N, 4.67 - 3.396 N, 5.161 - 4.096 N, 5.459 - 4.141 N, respectively. The effects of retentive force of all PEEK clasps groups were significant decreased. Thermo-mechanical cycles caused significant dimensional changes at points with M2, M4, and M5, and abraded the clasp corners and increased the distance between the ends of the clasp, resulting in reduced retentive forces (P* = .016, P* = .042, P < .001, respectively). CONCLUSION. Thermo-mechanical aging decreases the retentive forces in PEEK clasps. Increasing the thickness and undercut amount of clasps decreases the amount of dimensional change. The values measured after aging are within the clinically acceptable limits.