• Title/Summary/Keyword: Thermo-Viscoplastic Finite Element Method

Search Result 22, Processing Time 0.023 seconds

Computational Efficiency of Thermo-Elasto-Viscoplastic Damage and Contact Analyses by Domain/Boundary Decomposition (영역/경계 분할에 의한 열탄점소성 손상 및 접촉 해석의 효율화)

  • Kim, Sung-Jun;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • A domain/boundary decomposition method is applied for efficient analyses of thermo-elasto-viscoplastic damage and contact problems under the assumption of infinitesimal deformation. For the decomposition of a whole domain and contact boundaries, all the equality constraints on the interface and contact interfaces are restated with simple penalty functional. Therefore, the non-linearity of the problem is localized within finite element matrices in a few subdomains and on contact interfaces. By setting up suitable solution algorithms, the computational efficiency can be improved considerably. The general tendency of the computational efficiency is illustrated with some numerical experiments.

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.

Analysis of AA6061 Wheel Forging Processes by the Thermo-Viscoplastic Finite Element Method (AA6061 휠 성형공정의 열-점소성 유한요소해석)

  • 김영훈;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.11-16
    • /
    • 1997
  • In this study, the finite element analysis of AA6061 wheel forging processes over hot working range is performed and a thermo-viscoplasticity theory applicable to hot forging is applied for simulation. Aluminum alloy has frequently been utilized to manufacture automobile and aircraft parts due to its various advantages such as lightness, good forgeability, and wear resistance. Several forging conditions are applied to the simulation, such as die speeds, rib thicknesses, and depth of die cavity. The effectiveness of the simulation results is summarized in terms of metal flow, strain distributions, temperature distributions, forging load, which are essential to over all process design.

  • PDF

A Finite Element Model for Predicting the Microstructural Evolution in Hot Rolling (열간압연시 미세조직 예측을 위한 유한요소 모델)

  • Cho, Hyunjoong;Kim, Naksoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.90-100
    • /
    • 1997
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical equations suggested by different research groups were used together to form an integrated system of process and micro- structure simulation of hot rolling. The distribution and time histroy of the momechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained from the finite element analysis of multipass hot rolling processes. The distribution of metallurgical variables were calculated on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in the literature. Consequently, this approach makes it possible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

Development of PC-based Simulation System for Metal Forming (PC기반 소성가공공정 성형해석 시스템 개발)

  • 곽대영;천재승;김수영;이근안;임용택
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.233-241
    • /
    • 2000
  • It is well known that the quality and efficiency of the design of metal forming processes can be significantly improved with the aid of effective numerical simulations. In the present study, a two-and three-dimensional finite element simulation system, CAMP form, was developed for the analysis of metal forming processes in the PC environment. It is composed of a solver based on the thermo-rigid-viscoplastic approach and graphic user interface (GUI) based pre-and post-processors to be used for the effective description of forming conditions and graphic display of simulation results, respectively. In particular, in the case of CAMPform 2D (two-dimensional), as the solver contains an automatic remeshing module which determines the deformation step when remeshing is required and reconstructs the new mesh system, it is possible to carry out simulations automatically without any user intervention. Also, the forming analysis considers ductile fracture of the workpiece and wear of dies for better usage of the system. In the case of CAMPform 3D, general three-dimensional problems that involve complex die geometries and require remeshing can be analyzed, but full automation of simulations has yet to be achieved. In this paper, the overall structure and computational background of CAMPform will be briefly explained and analysis results of several forming processes will be shown. From the current results, it is construed that CAMPform can be used in providing useful information to assist the design of forming processes.

  • PDF

A Study on the Finite Element Analysis of Chip Formation in Machining (절삭가공시 집형성의 유한요소 해석에 관한 연구)

  • 김남용;박종권;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.973-976
    • /
    • 1997
  • Process behavior in metal cutting results from the chip formation process which is not easily observable and measurable during machining. By means of the finite element method chip formation in orthogonal metal cutting is modeled. The reciprocal interaction between mechanical and thermal loads is taken into consideration by involving the thermo-viscoplastic flow behavior of workpiece material. Local and temporal distributions of stress and temperature in the cutting zone are calculated depending on the cutting parameters. The calculated cutting forces and temperatures are compared with the experimental results obtarned from orthogonal cutting of steel AISl 4140. The model can be applied in process design for selection of appropriate tool-workpiece combination and optimum cutting conditions in term of mechanical and thermal loads.

  • PDF

Optimal Design of Dimension of Extrusion Die with Multi Stress Rings (다중보강링을 갖는 압출금형의 치수최적설계)

  • An, Sung-Chan;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2211-2218
    • /
    • 2002
  • In this study, an optimal design study has been made to determine dimensions of die and multi stress rings for extrusion process. For this purpose, a thermo-rigid-viscoplastic finite element program, CAMPform, was used fur forming analysis of extrusion process and a developed elastic finite element program fur elastic stress analysis of the die set including stress rings. And an optimization program, DOT, was employed for the optimization analysis. From this investigation, it was found out that the amount of shrink fitting incurred by the order of assembly of the die set should be taken into account for optimization when the multi stress rings are used in practice. In addition, it is construed that the proposed design method can be beneficial fur improving the tool life of cold extrusion die set.

An Analysis of Hot Closed-Die Forging to Reduce Forging Load (단조하중 감소를 위한 열간 형단조공정 해석)

  • 김헌영;김중재;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2970-2981
    • /
    • 1993
  • In hot closed-die forging the load increases rapidly near the final stage. Preforming operation is important to both the sound final forging and die-service life. In this study, the material flows during preforming and final forging are investigated. The physical modeling with Plasticine as a model material showed clear flow patterns. The forging process were numerically simulated by the finite element method with the isothermal and the non-isothermal models. The flow patten of the isothermal simulation showed good agreements with the experiments. Temperature changes and pressure distributions on the die surfaces during one cycle of the forging process were obtained from the non-isothermal simulation. High pressure and temperature were developed at certain areas of the die surfaces. It was concluded that those areas usually coincide with each other and should be distributed by the preforming operations to enhance the die life.

Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis (유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구)

  • Sur, Uk-Hwan;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.135-140
    • /
    • 2004
  • Wear mechanisms may be briefly classified by mechanical, chemical and thermal wear. A plane strain finite element method is used with a new material stress and temperature fields to simulate orthogonal machining with continuous chip formation. Deformation of the workpiece material is healed as elastic-viscoplastic with isotropic strain hardening and the numerical solution accounts for coupling between plastic deformation and the temperature field, including treatment of temperature-dependent material properties. Effect of the uncertainty in the constitutive model on the distributions of strait stress and temperature around the shear zone are presented, and the model is validated by comparing average values of the predicted stress, strain, and temperature at the shear zone with experimental results.

A Study On The Microstructural Evolution In Hot Rolling (열간압연중 발생하는 미세조직 변화에 관한 연구)

  • 조현중;김낙수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.16-29
    • /
    • 1995
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical mathematical equations suggested by different research groups were used together to form an integrated system of process and microstructure simulation of hot rolling. The distribution and time history of thermomechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained FEM analysis of multipass hot rolling processes. Then distribution of metallurgical variables were calculated successfully on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in literature. Consequently, this approach makes it passible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF