• Title/Summary/Keyword: Thermo-Mechanical FE Analysis

Search Result 37, Processing Time 0.03 seconds

A Study on the Shape Correction of Stamped Parts by the Irradiation of Laser (레이저를 이용한 스탬핑 제품의 스프링백 형상교정에 관한 연구)

  • Shim, H.B.;Kim, D.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.519-530
    • /
    • 2009
  • The study is concerned with shape correction of stamped product using the laser irradiation. As a fundamental study, laser irradiation process has been analyzed through the thermo-mechanical FE analysis. For the purpose of validation, laser scanning experiment has been carried out also. Since the deformation mechanism involved in the laser scanning is extremely complicated due to the highly temperature dependent material properties, the determination of laser scanning pattern is not easy for the application of real stamped parts. A simplified method for the application of springback correction has been suggested with the thermo-mechanical FE analysis.

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

Microstructural Analysis of Thermo-Mechanical Processed Ti-6Al-4Fe Alloy (Ti-6Al-4Fe 합금의 가공열처리 미세조직 분석)

  • Choe, Byung Hak;Choi, Won-Youl;Shim, Jong Heon;Park, Chan Hee;Kang, Joo-Hee;Kim, Seung Eon;Hyun, Yong Taek
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.410-416
    • /
    • 2015
  • Microstructural analysis of a (${\alpha}+{\beta}$) Ti alloy was investigated to consider phase transformation in each step of the thermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated with solid solution at $880^{\circ}C$, rolling at $880^{\circ}C$ and annealing at $800^{\circ}C$. In the STQ state, the TAF microstructure was composed of a normal hcp ${\alpha}$ and metastable ${\beta}$ phase. In a rolled state, it was composed of fine B2 precipitates in an ${\alpha}$ phase, which had high Fe segregation and a coherent relationship with the ${\beta}$ matrix. Finally, in the annealing state, the fine B2 precipitates had disappeared in the ${\alpha}$ phase and had gone to the boundary of the ${\alpha}$ and ${\beta}$ phase. On the other hand, in a lower rolling temperature of $704^{\circ}C$, the B2 precipitates were more coarse in both the ${\alpha}$ and the boundary of ${\alpha}$ and ${\beta}$ phase. We concluded that microstructural change affects the mechanical properties of formability including rolling defects and cracks.

Scale-dependent buckling of embedded thermo-electro-magneto-elastic cylindrical nano-shells with different edge conditions

  • Yifei Gui;Honglei Hu
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.601-613
    • /
    • 2024
  • A new analytical buckling solution of a thermo-electro-magneto-elastic (TEME) cylindrical nano-shell made of BiTiO3-CoFe2O4 materials is obtained based on Hamiltonian approach. The Winkler and Pasternak elastic foundations as well as thermo-electro-magneto-mechanical loadings are applied, and two different types of edge conditions are taken into the investigation. According to nonlocal strain gradient theory (NSGT) and surface elasticity theory in conjunction with the Kirchhoff-Love theory, governing equations of the nano-shell are acquired, and the buckling bifurcation condition is obtained by adopting the Navier's method. The detailed parameter study is conducted to investigate the effects of axial and circumferential wave numbers, scale parameters, elastic foundations, edge conditions and thermo-electro-magnetic loadings on the buckling behavior of the nano-shell. The proposed model can be applied in design and analysis of TEME nano components with multi-field coupled behavior, multiple edge conditions and scale effect.

A Study on the Exhaust System Model for Thermal Stress Analysis of Exhaust Manifold (배기매니폴드의 열응력 해석을 위한 배기계 모델 구성에 관한 연구)

  • Choi, Bok-Lok;Lee, Kyung-Woo;Chang, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • In this study, we investigated the efficient FE modelling techniques for thermal stress analysis of the exhaust manifold subject to thermo-mechanical cyclic loadings. At first, full engine model was considered to identify the critical locations and their results were compared to failure site shown by the engine bench test. And the equivalent system model was proposed based on the mechanical behavior of the full engine model. The weak areas of both FE models show a good agreement with the experimental crack location. As a result, a simplified modelling methodology was verified to estimate the thermo-mechanical behaviors of the exhaust manifold under thermal shock test condition.

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J.;Na, S.;Jang, J.G.;Kim, H.K.;Lee, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.519-536
    • /
    • 2015
  • On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

A Study on Ash Fusibility Temperature of Domestic Thermal Coal Implementing Thermo-Mechanical Analysis (TMA를 이용한 국내 발전용 탄의 용융점 변화에 대한 연구)

  • Lee, Soon-Ho;Lim, Ho;Kim, Sang Do;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.233-239
    • /
    • 2014
  • The slagging which generated from ash deposition on furnace wall and tube in boiler reduces the heat transfer efficiency and damages to safety of boiler. The slag flow behavior in boiler is affected by melting temperature which is related to ash compositions. In this study, the behavior of slag is researched by using ash fusibility test, called TMA (Thermo-Mechanical Analysis). The technique measures the percentage shrinkage as the function of temperature, T25%, T50%, T75%, T90%. These temperatures indicate different stages of melting. Then, the effect of ash chemical compositions measured from XRF (X-ray Fluorescence Spectrometer) to ash fusion temperatures is discussed. Among the chemical compositions, refractory and fluxing influence on ash fusibility is described. High levels of refractory component and limited amount of fluxing components ($Fe_2O_3$, $K_2O$, CaO) increase overall melting temperatures. High $SiO_2/Al_2O_3$ ratio decrease high melting temperatures (T75%, T90%). Meanwhile, the presence of reasonable levels of fluxing components reduces overall melting temperature. A presence of fluxing component such as $K_2O$ and CaO is found to decrease the T25% values significantly. From this research, it is possible to make a reasonable explanation and prediction of ash fusion characteristic from analysis of TMA results and ash chemical compositions.