• Title/Summary/Keyword: Thermal-structure Stability

Search Result 650, Processing Time 0.032 seconds

Fine Structure and Physical Properties of PEN Fiber with the Repeated Extension Fatigue(II) - Thermal Effect - (타이어코드용 PEN섬유의 반복신장 피로에 따른 미세구조와 물성(II) - 피로 온도에 따른 영향)

  • 김명우;방윤혁;박종범;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.247-250
    • /
    • 2002
  • Poly(ethylene 2,6-naphthalene dicarboxylate)(PEN)은 그 주사슬에 PET의 벤젠고리 대신 나프탈렌 고리로 치환된 구조로 인하여 PEN섬유는 내열성, 탄성계수(modulus), 형태안정성(dimensional stability), 내화학성 등에서 PET에 비해 우수한 장점을 갖고 있으며, 따라서 고온, 고습한 환경에서도 기계적 성질을 오랫동안 유지할 수 있다. 그리고 중합 및 방사 등의 제조 공정이 PET와 유사하여 향후 고강력, 고형 태안정성 산업용사에서 획기적인 변화를 가져올 것으로 기대된다. (중략)

  • PDF

Advances in High TG Hole Transporters

  • Gelsen, Olaf;Lischewski, V.;Leonhardt, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.355-356
    • /
    • 2006
  • The glass transition behavior of OLED materials is very important for both processing and lifetime. We report about the correlation between the structure of selected small molecule Hole Transport Materials (HTM's) and their glass transition temperature. The thermal stability of devices manufactured with them was investigated. The results give researchers and engineers some information which are helpful for designing new molecules and processing them in device making.

  • PDF

Poly(fluorene)s for LED Applications

  • Lee, Jeong-Ik;Zyung, Tae-Hyoung;Klaerner, Gerrit;Miller, Robert D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.129-130
    • /
    • 2000
  • The emission color stability of poly(fluorene) derivatives upon thermal annealing or passage of current in an electroluminescent device is affected by the structure of the main chain polymer unit and particularly by the polymer chain end substituents. Proper attention to these features leads to colorfast blue emission in both photo- and electoluminescence. Furthermore, the spectral emission characteristics can be tuned by the incorporation of various comonomers. Preliminary single layer device studies validate the potential utility of poly(fluorene) homo and copolymers for OLED applications.

  • PDF

Hydrophobic Catalyst Mixture for the Isotopic Exchange Reaction between Hydrogen and Water

  • Paek S.;Ahn D.H.;Choi H.J.;Kim K.R.;LEE M.;YIM S.P.;CHUNG H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.141-148
    • /
    • 2005
  • Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  • PDF

Thermal Stability Improvement of Ni Germanosilicide using Ni-Ta alloy for Nano-scale CMOS Technology (Nano-scale CMOS에 적용하기 위한 Ni-Ta 합금을 이용한 Ni-Germanosilicide의 열안정성 개선)

  • Kim, Yong-Jin;Oh, Soon-Young;Yun, Jang-Gn;Lee, Won-Jae;Agchbayar, Tuya;Ji, Hee-Hwan;Kim, Do-Woo;Heo, Sang-Bum;Cha, Han-Seob;Kim, Young-Chul;Lee, Hi-Deok;Wang, Jin-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.607-610
    • /
    • 2005
  • In this paper, Ni Germanosilicide using Ni-Ta/Co/TiN is proposed to improve thermal stability. The sheet resistance of Ni Germanosilicide utilizing pure Ni increased dramatically after the post-silicidation annealing at $600^{\circ}C$ for 30min. However, using the proposed Ni-Ta/Co/TiN structure, low temperature silicidation and wide range of RTP process window were achieved.

  • PDF

Effects of Irradiation Crosslinking and Molecular Weight Properties on Crosslinked PP Foaming Process (전자선 조사량과 분자량 특성이 전자선 가교 PP 발포 가공에 미치는 영향)

  • 홍다윗;윤광중;백운선;정영헌;이준길
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.508-515
    • /
    • 2002
  • The effects of the crosslinking caused by irradiation dose, molecular weights of the foaming materials, and various foaming processes on the foam structure of the polypropylene (PP) were investigated. The maximum gel content of the PP was 48% when the sheet was irradiated with 3.2 Mrad. This high gel content improved the cell structures by providing high thermal stability. The increase of both the gel content and structural development were stopped at the irradiation dose exceeding 3.2 Mrad. The increase of the molecular weights served to help produce a foam with particularly fine and even cell structures, along with improved thermal stability as well.

Preparation and Properties of A Novel Y-type Nonlinear Optical Polyester with Dioxybenzylidenecyanoacetate Groups

  • Lee, Ga-Young;Won, Dong-Seon;Jang, Han-Na;No, Hyo-Jin;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1080-1084
    • /
    • 2009
  • Methyl 2,4-di-(2'-hydroxyethoxy)benzylidenecyanoacetate (3) was prepared and polymerized with terephthaloyl chloride to yield a novel Y-type polyester 4 containing 2,4-dioxybenzylidenecyanoacetate groups as NLOchromophores, which constituted parts of the polymer backbone. The resulting polymer 4 is soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymer 4 showed thermal stability up to 280 ${^{\circ}C}$ in thermogravimetric analysis with glass-transition temperature obtained from differential scanning calorimetry near 108 ${^{\circ}C}$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer films at the 1064 nm fundamental wavelength was around $3.54\;{\time}\;10^{-9}$ esu. The dipole alignment exhibited a thermal stability up to near $T_g$ and no significant SHG decay was observed below 100 ${^{\circ}C}$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Phase Transformation Characteristics of Combustion-Synthesized TiO2 Nanoparticles (연소합성 TiO2 나노입자의 고온 상변환 특성에 관한 연구)

  • Choi, Shang-Min;Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2008
  • In this article, $TiO_2$ nanoparticles were synthesized by using $O_2$-enriched coflow, hydrogen, diffusion flames. We investigated the thermal stability of the flame-synthesized $TiO_2$ nanoparticles by examining the crystalline structures of the nanoparticles. Also, the results were compared with those of commercial P-25 nanoparticles. $TiO_2$ nanoparticles, which were spherical with diameters approximately ranging from 30 to 60nm, were synthesized. From the XRD analyses, about 96wt% of the synthesized nanoparticles were anatase-phase. After the heat-treatment at $800^{\circ}C$ for 30 minutes, the synthesized $TiO_2$ nanoparticles showed no significant changes of their shapes and crystalline phases. On the other hand, most of the commercial particles sintered with each other and changed to the rutile-phase. Based on the result of XRD analysis it is believed that the flame-synthesized $TiO_2$ nanoparticles have higher thermal stability at $800^{\circ}C$ than the commercial particles.

Polymerization and Thermal Characteristics of Acrylonitrile/Dicyclohexylammonium 2-Cyanoacrylate Copolymers for Carbon Fiber Precursors

  • Kim, Ki-Young;Park, Woo-Lee;Chung, Yong-Sik;Shin, Dong-Geun;Han, Jin-Wook
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study experimentally investigated dicyclohexylammonium 2-cyanoacrylate (CA) as a potential comonomer for polyacrylonitrile (PAN) based carbon fiber precursors. The P(AN-CA) copolymers with different CA contents (0.19-0.78 mol% in the feed) were polymerized using solution polymerization with 2,2-azobis(isobutyronitrile) as an initiator. The chemical structure and composition of P(AN-CA) copolymers were determined by proton nuclear magnetic resonance and elemental analysis, and the copolymer composition was similar to the feeding ratio of the monomers. The effects of CA comonomer on the thermal properties of its copolymers were characterized differential scanning calorimetry (DSC) in nitrogen and air atmospheres. The DSC curves of P(AN-CA) under nitrogen atmosphere indicated that the initiation temperature for cyclization of nitrile groups was reduced to around $235^{\circ}C$. The heat release and the activation energy for cyclization reactions were decreased in comparison with those of PAN homopolymers. On the other hand, under air atmosphere, the P(AN-CA) with 0.78 mol% CA content showed that the initiation temperature of cyclization was significantly lowered to $160.1^{\circ}C$. The activation energy value showed 116 kJ/mol, that was smaller than that of the copolymers with 0.82 mol% of itaconic acids. The thermal stability of P(AN-CA), evidenced by thermogravimetric analyses in air atmosphere, was found higher than PAN homopolymer and similar to P(AN-IA) copolymers. Therefore, this study successfully demonstrated the great potential of P(AN-CA) copolymers as carbon fiber precursors, taking advantages of the temperature-lowering effects of CA comonomers and higher thermal stability of the CA copolymers for the stabilizing processes.