• Title/Summary/Keyword: Thermal-mechanical characteristics

Search Result 1,971, Processing Time 0.032 seconds

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

Thermal Analysis of a Canned Induction Motor for Main Coolant Pump in System-Integrated Modular Advanced Reactor

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.32-36
    • /
    • 2003
  • The three-phase canned induction motor, which consists of a stator and rotor with a seal can, is used for the main coolant pump (MCP) of the System-integrated Modular Advanced Reactor (SMART). The thermal characteristics of the can must be estimated exactly, since the eddy current loss of the can is a dominant parameter in design. Besides the insulation of the motor winding is compared of Teflon, glass fiber, and air, so it is not an easy task to analyze. A FEM thermal analysis was per-formed by using the thermal properties of complex insulation which were obtained by comparing the results of finite element thermal analysis and those of the experiment. As a result, it is shown that the characteristics of prototype canned induction motor have a good agreement with the results of FEM.

A Study on Thermal Characteristics of Adaptor Housing for Commercial Vehicles according to Molten Metal Condition (용탕조건에 따른 상용 차량용 어댑터 하우징의 열적특성에 관한 연구)

  • Ko, Dong-Guk;Myung, Soon-Sik;Kang, Byeong-Yong;Kim, Min-Soo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.745-750
    • /
    • 2018
  • In this study, the thermal behavior of adaptor housing was analyzed by the numerical method. The boundary conditions used to die casting process were the temperature of molten metal and injection time. As the temperature of the molten metal increased, the tensile strength of the product decreased by the blow hole generated in the molten metal, and the decreasing tendency was gradually decreased. As the injection time of the molten metal increased, the heat flux rose, but the degree of the increase was very small. So, the injection time of the molten metal had little effect on the thermal behavior and diffusion of the adapter housing. As a result, the heat of the molten metal was transferred into the housing and the thermal behavior spread widely.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;Hai-Bo Liu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.649-658
    • /
    • 2023
  • Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

The analysis of electrical characteristics with Micro-crack in PV module (Micro-cracks에 의한 PV 모듈의 전기적 특성 분석)

  • Song, Young-Hun;Ji, Yand-Geun;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.25-30
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with Micro-cracks in Photovoltaic module. Micro cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. And The solar cells have to with stand the stress under out door operation in the finished module. Here the mechanical stress is induced by temperature changes and mechanical loads from wind and snow. So, we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because micro-cracks accelerated aging by thermal cycling test, according to IEC61215. Before every test, we checked output and EL image of PV module. As the result of first step, we detected little power loss(0.9%). But after thermal cycling test increased power loss about 3.2%.

  • PDF

NUMERICAL STUDY ON THE PERFORMANCE CHARACTERISTICS OF SHELL AND TUBE HEAT EXCHANGER BY FLOW DISTRIBUTORS : PART(II) HEAT TRANSFER CHARACTERISTICS (유동분배판에 의한 원통-다관형 열교환기의 성능 특성에 관한 수치해석적 연구(II): 전열특성)

  • Park, Y.M.;Lee, T.H.;Chung, H.T.;Kim, H.B.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.28-32
    • /
    • 2016
  • In the previous study, it is proved by numerical simulation that the baffle shaped as the porous plate installed in the inlet chambers improves the redistribution of the flow injecting to the tube bundles. In the present study, numerical simulation has been performed to investigate the effects of the flow distributors on the thermal characteristics of the shell and tube heat exchangers. The flow fields have been analysed by the three-dimensional Navier-Stokes solvers including the thermal conditions on the shell sides. The numerical results showed that the presence of the baffles improves the redistribution of the heat transfer to the tube bundles though the overall performance drop slightly on the present flow conditions.

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Oh, Sang-June;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.49-54
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with $5kW_{th}$ Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along the this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components (발열제어부품소재 적용을 위한 실리콘 복합조성물의 열전도 특성)

  • Kwak, Ho-Du;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.116-121
    • /
    • 2019
  • Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.