• Title/Summary/Keyword: Thermal-hydraulic

Search Result 800, Processing Time 0.022 seconds

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

  • Lee, Yeon-Gun;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.439-458
    • /
    • 2013
  • REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System) is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS) method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility). Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

Multivariate analysis of critical parameters influencing the reliability of thermal-hydraulic passive safety system

  • Olatubosun, Samuel Abiodun;Zhang, Zhijian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • Thermal-hydraulic passive safety systems (PSSs) are incorporated into many advanced reactor designs on the bases of simplicity, economics and inherent safety nature. Several factors among which are the critical parameters (CPs) that influence failure and reliability of thermal-hydraulic (t-h) passive systems are now being explored. For simplicity, it is assumed in most reliability analyses that the CPs are independent whereas in practice this assumption is not always valid. There is need to critically examine the dependency influence of the CPs on reliability of the t-h passive systems at design stage and in operation to guarantee safety/better performance. In this paper, two multivariate analysis methods (covariance and conditional subjective probability density function) were presented and applied to a simple PSS. The methods followed a generalized procedure for evaluating t-h reliability based on dependency consideration. A passively water-cooled steam generator was used to demonstrate the dependency of the identified key CPs using the methods. The results obtained from the methods are in agreement and justified the need to consider the dependency of CPs in t-h reliability. For dependable t-h reliability, it is advisable to adopt all possible CPs and apply suitable multivariate method in dependency consideration of CPs among other factors.

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

Code development and preliminary validation for lead-cooled fast reactor thermal-hydraulic transient behavior

  • Chenglong Wang;Chen Wang;Wenxi Tian;Guanghui Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2332-2342
    • /
    • 2024
  • Lead-cooled fast reactors (LFRs) have a wide range of application scenarios, which require the thermal-hydraulic characteristics of LFRs to be reliable. In the present paper, the Lead-cooled fast reactor Thermal-Hydraulic Analysis Code LETHAC was developed, including the models of pipe, heat exchanger, and pool. To verify the correctness of LETHAC, two experimental facilities and three experimental cases were selected, including GFT and PLOFA tests for NACIE-UP and Test-1 for CIRCE. The calculated results show the same and consistent trend with the experimental data, but there are some discrepancies. It can be found that LETHAC is suitable and reliable in predicting the transient behavior of lead-cooled system.

Ground Thermal Conductivity Test with A Wireless Probe (무선 전자식 장비를 이용한 지중열전도도 측정 기술)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul;Ko, Gun-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2381-2384
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic Response Test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless probe for hi-speed k determination was introduced in this paper. This technique using a wireless probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. As a result, the electronic wireless probe can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of local heat flow, etc.

  • PDF

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.