• 제목/요약/키워드: Thermal-Fluid Analysis

Search Result 808, Processing Time 0.024 seconds

Separation of Non-Volatile Compounds Unsuitable for GC Using Supercritical Fluid as Mobile Phase (초임계 유체를 이동상으로 사용함으로써 기체 크로마토그래피로 분리하기 힘든 비휘발성 화합물들의 분리)

  • Pyo, Tong Jin;Kim, Hoon Ju
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.153-158
    • /
    • 1992
  • In this work, we developed supercritical fluid chromatographic methods for the samples which are difficult to analyze with conventional GC or HPLC. Long-chain Hydrocarbons, mink oils and soybean oils unsuitable for GC because of their low volatility or limited thermal stability were separated by SFC due to the high solvating properties of supercritical carbon dioxide fluids. In our research, a new method for the analysis of polar fatty acids and pesticides was developed. This method should be used to overcome problems with polar samples in SFC.

  • PDF

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core

  • Chen, Guangliang;Qian, Hao;Li, Lei;Yu, Yang;Zhang, Zhijian;Tian, Zhaofei;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3171-3181
    • /
    • 2021
  • This research serves to advance the development of engineering computational fluid dynamics (CFD) computing efficiency for the analysis of pressurized water reactor (PWR) core using rod-type fuel assemblies with mixing vanes (one kind of typical PWR core). In this research, a CFD scheme based on the reconstruction of the initial fine flow field (RIF CFD scheme) is proposed and analyzed. The RIF scheme is based on the quantitative regulation of flow velocities in the rod-type PWR core and the principle that the CFD computing efficiency can be improved greatly by a perfect initialization. In this paper, it is discovered that the RIF scheme can significantly improve the computing efficiency of the CFD computation for the rod-type PWR core. Furthermore, the RIF scheme also can reduce the computing resources needed for effective data storage of the large fluid domain in a rod-type PWR core. Moreover, a flow-ranking RIF CFD scheme is also designed based on the ranking of the flow rate, which enhances the utilization of the flow field with a closed flow rate to reconstruct the fine flow field. The flow-ranking RIF CFD scheme also proved to be very effective in improving the CFD efficiency for the rod-type PWR core.

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

Mesh and turbulence model sensitivity analyses of computational fluid dynamic simulations of a 37M CANDU fuel bundle

  • Z. Lu;M.H.A. Piro;M.A. Christon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4296-4309
    • /
    • 2022
  • Mesh and turbulence model sensitivity analyses have been performed on computational fluid dynamics simulations executed with Hydra and ANSYS Fluent for a single CANadian Deuterium Uranium (CANDU) 37M nuclear fuel bundle placed within a standard pressure tube. The goal of this work was to perform a methodical analysis to objectively determine an appropriate mesh and to gauge the sensitivity of different turbulence models for CANDU subchannel flow under isothermal conditions. The boundary conditions and material properties are representative of normal operating conditions in a high-powered channel of the Darlington Nuclear Generating Station. Four meshes were generated with ANSYS Workbench Meshing, ranging from 22 to 84 million cells, and analyzed here to determine an appropriate level of mesh resolution and quality. Five turbulence models were compared in the turbulence model sensitivity analysis: standard k - ε, RNG k - ε, realizable k - ε, SST k - ω, and the Reynolds Stress Model. The intent of this work was to gain confidence in mesh generation and turbulence model selection of a single bundle to inform the decision making of subsequent investigations of an entire fuel channel containing a string of twelve bundles.

Lubrication phenomenon in the stagnation point flow of Walters-B nanofluid

  • Muhammad Taj;Manzoor Ahmad;Mohamed A. Khadimallah;Saima Akram;Muzamal Hussain;Madeeha Tahir;Faisal Mehmood Butt;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.303-312
    • /
    • 2023
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. For the solution, the governing partial differential equation is transformed into a series of non-linear ordinary differential equations. With the help of hybrid homotopy analysis method; that consists of both the homotopy analysis and shooting method these equations can be solved. The influence of different involved constraints on quantities of interest are sketched and discussed. The viscoelastic parameter, slip parameters on velocity component and temperature are analyzed. The velocity varies by increase in viscoelastic parameter in the presence of slip parameter. The slip on the surface has major effect and mask the effect of stagnation point for whole slip condition and throughout the surface velocity remained same. Matched the present solution with previously published data and observed good agreement. It can be seen that the slip effects dominates the effects of free stream and for the large values of viscoelastic parameter the temperature as well as the concentration profile both decreases.

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

Design Study of a Brazed Plate Heat Exchanger Condenser Through Two-Phase Flow Analysis (이상유동 해석을 통한 브레이징 판형 응축기 설계 연구)

  • Hwang, Dae-jung;Oh, Cheol;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Lee, Byeong-gil
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2022
  • This study was aimed at designing a condenser, as a component of the organic Rankine cycle system for ships. The condenser was manufactured through press molding to achieve a bent shape to enhance the heat transfer performance, considering the shape of the heat transfer plate used in a brazing plate heat exchanger. The heat transfer plate was made of copper-nickel alloy. The required heat transfer rate for the condenser was 110 kW, and the maximum number of layers was set as 25, considering the characteristics of high-temperature brazing. Computational fluid dynamics techniques were used to perform the thermal fluid analysis, based on the ANSYS CFX (v.18.1) commercial program. The heat transfer rate of the condenser was 4.96 kW for one layer (width and length of 0.224 and 0.7 m, respectively) of the heat transfer exchanger. The fin efficiency pertaining to the heat transfer plate was approximately 20%. The heat flow analysis for one layer of the heat exchanger plate indicated that the condenser with 25 layers of heat transfer plates could achieve a heat transfer rate of 110 kW.

Numerical Study Of H2O-Cu Nanofluid Using Lattice-Boltzmann Method

  • Taher, M.A.;Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In the present study, a laminar natural convection flow of $H_2O$-Cu nanofluid in a two dimensional enclosure has been investigated using a thermal lattice Boltzmann approach with the Bhatnagar-Gross-Krook (BGK) model. The effect of suspended nanoparticles on the fluid flow and heat transfer process have been studied for different controlling parameters such as particle volume fraction ($\Phi$), Rayleigh number (Ra). For this investigation the Rayleigh number changes from 104 to 106 and volume fraction varied from 0 to 10% with three different particle diameters (dp), say 10 nm, 20 nm and 40 nm. It is shown that increasing the Rayleigh number (Ra) and the volume fraction of nanofluid causes an increase of the effective heat transfer rate in terms of average Nusselt number (Nu) as well as the thermal conductivity of nanofluid. On the other hand, increasing the particle diameter causes the decrease of the heat transfer rate and thermal conductivity. The result of the analysis are compared with experimental and numerical data both for pure and nanofluids and it is seen a relatively good agreement.

A STUDY ON THE CHOICE OF THERMAL MODELS IN THE COMPUTATION OF NATURAL CONVECTION WITH THE LATTICE BOLTZMANN METHOD (Lattice Boltzmann 방법을 사용한 자연대류 해석에서 열모델의 선택에 관한 연구)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A comparative analysis of thermal models in the lattice Boltzmann method(LBM) for the simulation of laminar natural convection in a square cavity is presented. A HYBRID method, in which the thermal equation is solved by the Navier-Stokes equation method while the mass and momentum conservation are resolved by the lattice Boltzmann method, is introduced and its merits are explained. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with a deferred correction method to ensure stability of the solutions. The HYBRID method and the double-population method are applied to the simulation of natural convection in a square cavity and the predicted results are compared with the benchmark solutions given in the literatures. The predicted results are also compared with those by the conventional Navier-Stokes equation method. In general, the present HYBRID method is as accurate as the Navier-Stokes equation method and the double-population method. The HYBRID method shows better convergence and stability than the double-population method. These observations indicate that this HYBRID method is an efficient and economic method for the simulation of incompressible fluid flow and heat transfer problem with the LBM.