• Title/Summary/Keyword: Thermal-Fluid Analysis

Search Result 808, Processing Time 0.026 seconds

Numerical Study of Behaviour Characteristics of Mechanical Seals with Inclined Friction Faces (경사진 마찰접촉면을 갖는 기계경사면시일의 거동특성에 관한 수치적 연구)

  • Kim Chung Kyun
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2004
  • Thermal distortion of non-contacting mechanical seals with inclined rubbing surfaces is affected by friction heat between seal ring and seal seat. The circulation fluid along the inclined rubbing surfaces maintains cooling friction heat and lubrication between the sealing surfaces of mechanical seal with an inclined surface. Mechanical seals with inclined sealing surfaces may be useful for reducing the frictional heating and power loss because of the introduction of cooling fluids to the sealing gap between seal ring and seal seat. From the FEM computed result shows that the thermal behavior and von Mises stress of sealing faces with an inclined angle 60 are much reduced in comparison of the conventional mechanical face seal with rectangular sealing surfaces.

Gas Flow in a Rapidly Rotating Pipe with Azimuthal-Varying Thermal Wall Condition (회전방향 온도변화를 갖는 매우 빠르게 회전하는 파이프 내의 기체유동)

  • Park, Jun-Sang;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.628-633
    • /
    • 2003
  • An analysis on the steady-state has been made of flow of a compressible fluid rapidly-rotating in a pipe. The flow is induced by an small arbitrary azimuthally-varying thermal forcing added on the basic state of rigid body isothermal rotation. The system Ekman number is assumed to be very small value. Analytic solutions have been obtained for axisymmetric and non-axisymmetric types, in which the axisymmetric solution comes from the azimuthally-averaged wall boundary condition and the non-axisymmetric solution from fluctuating wall boundary condition.

  • PDF

Numerical analysis for the optimum design of a triple-glazed airflow window (환기식 3중 집열창의 최적설계를 위한 수치해석 연구)

  • Kim, H.J.;Hwang, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.484-496
    • /
    • 1997
  • The fluid flow and heat transfer characteristics of conjugate forced and natural convection in the triple-glazed airflow window, where the outer air passes through a space contrived between the interior and exterior window panes, were studied numerically by a finite volume method for the elliptic form of the Navier-Stokes equations. The investigation focused on the influence of window geometry, ventilastion rate and solar energy on the temperature, velocity distribution and thermal performance of the airflow window. The comparison between the triple-glazed airflow window and the enclosed triple-glazed window was also made to evaluate the effect of buoyancy upon which the thermal performance of the window depended.

  • PDF

Design of the Wire Rope Type Snubber for Earthquake and Vibration of Piping System (Wire Rope형 배관 지진$\cdot$진동완충기의 설계)

  • 김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.173-179
    • /
    • 1998
  • The piping system of a power plant suffers not only thermal expansion according to the temperature variation, but also many kinds of load: steady state vibrations due to the equipment operation or fluid flow, and transient vibrations due to the earthquake or explosion, etc. The snubbers are usually installed on the piping system to allow thermal expansion, and to reduce dynamic responses. Most snubbers are kinds of hydraulic and mechanical type, which can be degraded by leakage and abrasion, and required much cost for maintenance and replacement. Recently the wire rope type snubbers are developed and applied to the power plant, and proved as effective to reduce piping system vibration. Wire rope type snubber uses the bending rigidity and energy dissipation properties of ropes. This paper presents the procedure of design, and the method to apply hysteresis curve to the dynamic response analysis. Experiments were also conducted to confirm design results.

  • PDF

Desktop PC CPU Cooling System Design and Analysis

  • Choi, Jee-Hoon;Yoo, Jung-Hyun;Seo, Min-Whan;Kang, Shin-Jae;Kim, Chul-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.601-604
    • /
    • 2008
  • Desktop PC CPUs have been significantly required to be the necessity of thermal management while they have satisfied the extensive data and graphic processing requirements. So the cooling systems assembled with heat pipes embedded in a metal cooling plate, and fins are widely used in the desktop PC markets. Due to a number of demands such as the confined space of desktop PCs, higher heat density of CPUs, and acoustic noise, however, there is the main drive to improve continuously cooling systems. This paper presents the flow and thermal behavior of the cooling system by using the computational fluid dynamics(CFD) code.

  • PDF

ANALYSIS OF UNIFORM STRAIGHT WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTITY AND HEAT TRANSFER COEFFICINT (열전도 계수와 열전달계수가 온도의 함수인 균일직선 휜의 해석)

  • Cho, Sung-Hwan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.3
    • /
    • pp.151-157
    • /
    • 1979
  • A general solution for temperature distribution And heat transfer for a uniform straight fin is yen. Thermal conductivity and heat transfer coefficient between the fin and the surrounding fluid can be arbitrary functions of temperature. Minimum weight conditions for a rectangular fin are analyzed, Numerical results for some special cases are given in graphical forms.

  • PDF

Influence of NCG Charging Mass on the Heat Transport Capacity of Variable Conductance Heat Pipe (불응축가스량이 가변전열 히트파이프의 열수송 특성에 미치는 영향)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • Numerical analysis and experimental study are performed to investigate the effect of heat load and operating temperature on the thermal performance of several variable conductance heat pipe (VCHP) with screen meshed wick. The heat pipe is designed in 200 screen meshes, 500 mm length and 12.7 mm outer diameter tube of copper, water (4.8 g) is used as working fluid and nitrogen as non-condensible gas (NCG). Heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Analysis values and experimental data of wall temperature distribution along axial length are presented for heat transport capacity, condenser cooling water temperature change, degrees of an inclination angle and operating temperature. These analysis and experiment give the follow findings: For the same charging mass of working fluid, the operating temperature of heat pipe becomes to be high with the increasing of charging mass of NCG. When the heat flux at the evaporator section increases, the vapor pressure in the pipe rises and consequently compresses the NCG to the condenser end part and increases the active length of the condenser. From previous process, it is found out we can control the operating temperature effectively and also the analysis and experimental results are relatively coincided well.

In-depth investigation of natural convection thermal characteristics of BALI experiment through Eulerian computational fluid dynamics code and comparison with Lagrangian code

  • Hyeongi Moon;Sohyun Park;Eungsoo Kim;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • In-vessel retention through external reactor vessel cooling (IVR-ERVC) is a severe accident management (SAM) strategy that has been adopted and used in many nuclear reactors such as AP1000, APR1400, and light water reactor etc. Some reactor accidents have raised concerns about nuclear reactors among residents, leading to a decrease in residents' acceptability and many studies on SAM are being conducted. Experiments on IVR-ERVC are almost impossible due to its specificity, so fluid characteristics are analyzed through BALI experiments with similar condition. In this study, computational fluid dynamics (CFD) via Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) for BALI experiments were performed. Steady-state CFD analysis was performed on three turbulence models, and SST k-ω model was in good agreement with the experimental measurement temperature within the maximum error range of 1.9%. LES CFD analysis was performed based on the RANS analysis results and it was confirmed that the temperature and wall heat flux for depth was consistent within an error range of 1.0% with BALI experiment. The LES CFD analysis results were compared with those of the Lagrangian-based solver. LES matched the temperature distribution better than SOPHIA, but SOPHIA calculated the position of boundary between stratified layer and convective layer more accurately. On the other hand, Lagrangian-based solver predicted several small eddy behaviors of the convective layer and LES predicted large vortex behavior. The vibration characteristics near the cooling part of the BALI experimental device were confirmed through Fast Fourier Transform (FFT) investigation. It was found that the power spectral density for pressure at least 10 times higher near the side cooling than near the top cooling.

Multi-physics Analysis for Temperature Rise Prediction of Power Transformer

  • Ahn, Hyun-Mo;Kim, Joong-Kyoung;Oh, Yeon-Ho;Song, Ki-Dong;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 2014
  • In this paper, a method for multi-physics analysis of the temperature-dependent properties of an oil-immersed transformer is discussed. To couple thermal fields with electromagnetic and fluid fields, an algorithm employing a user defined function (UDF) is proposed. Using electromagnetic analysis, electric power loss dependent on temperature rise is calculated; these are used as input data for multi-physics analysis in order to predict the temperature rise. A heat transfer coefficient is applied only at the outermost boundary between transformer and the atmosphere in order to reduce the analysis region. To verify the validity of the proposed method, the predicted temperature rises in high-voltage (HV) and low-voltage (LV) windings and radiators were compared with the experimental values.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.