• 제목/요약/키워드: Thermal-Comfort

검색결과 700건 처리시간 0.028초

실내공간의 복합 환경 조건이 인체의 생리 및 심리반응에 미치는 영향 (The Combined Environmental Factors on the Human Physiological and Psychological Responses in Indoor Space)

  • 윤인
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.87-94
    • /
    • 2012
  • Kruithof demonstrated the preferred combination of illuminance levels and color temperatures. However, as Benett pointed out, difference of themal variables in such preference may be expected. The purpose of this study is to clarify the combined effects of lighting conditions(illuminance, color temperature), operative temperature on the human physiological and psychological responses. In order to observe operative temperature change in preference of color temperatures for three illumination levels, three subjects were exposed to two different conditions of color temperatures of 2,850K, 4,200K and 6,850K combined with operative temperatures(OT) of $25{\sim}31^{\circ}C$ at 100~1000lx. Thermal sensation vote and comfortable sensation vote, brightness perception vote were reported in each experiment conditions. The following results were obtained : 1) When illuminace level was at 100lx in operative temperatures of OT $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, Color temperature affect not themal sensation but Warm-cool sensation. 2) Operative temperatures affect not brightness perception vote but visual comfort sensation vote, satisfactive sensation vote, warm-cool sensation vote and themal sensation vote.

도시 환경음의 쾌적성 평가요인에 관한 연구 (Acoustic Amenity Factor of Urban Environmental Sound for the Ecological Soundscape)

  • 국찬;송민정;신훈;장길수
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.428-436
    • /
    • 2006
  • The assessment of an urban site depends on the way whether it responds to multiple needs such as functionality, aesthetic and complex comfort of acoustic, thermal, lighting and air quality etc. This study aims to investigate the assessment of various urban soundscapes in the sense of acoustic amenity by the questionnaires. As a result, acoustic amenity assessment was influenced by the non-acoustic factors such as environment assessment of visual, thermal, air quality etc. In the sense of sound quality, urban environmental sound was interpreted as 3 factors of strength, evolution of time, spacial localization. So these factors would be considered in the new assessment method for acoustic amenity. And it was shown that the subjects tend to perceive the noise level less than $3{\sim}5dB\;L_{eqA}$ according to the urban landscapes under the similar noise exposure level.

청소년들의 겨울철 교실 내·외 환경에서의 자각적 내한성과 착의행동 분석 (Analysis of Teenagers' Self-identified Cold Tolerance and Wearing Behavior Inside and Outside the Classroom During Winter)

  • 홍민현;손수영
    • 한국의류학회지
    • /
    • 제44권1호
    • /
    • pp.126-140
    • /
    • 2020
  • This study analyzed the self-identified cold tolerance and wearing behavior of teenagers inside and outside the classroom during winter, considering recent climate changes. A questionnaire was divided into four parts-general information, thermal and comfort sensation inside and outside classroom, self-identified cold tolerance, and wearing behavior to collect data from 322 students. Over several years, changes were noted in respondents' wearing behavior during winter outings, with the biggest being the purchase of a "long padded jacket" for warmth while outside. Most respondents showed similar wearing behavior, such as no difference between the number of clothes worn in a classroom maintained at 20℃ (girls: 8.0±3.1 layer, boys: 6.5±2.1 layer) and outside (girls: 8.8±3.4 layer, boys: 7.1±3.0 layer), despite feeling differently about the thermal sensation inside and outside the classroom. This difference may due to a teenager's lack of knowledge about temperature and their tendency to follow clothing trends. Female students were more sensitive to the cold and wore more garments inside and outside the classroom. Gender-related differences should be considered when educating teenagers about safe and healthy clothing.

도시열섬현상완화를 위한 그린인프라 전략 (Green-infra Strategies for Mitigating Urban Heat Island)

  • 박채연;이동근;권유진;허민주
    • 한국환경복원기술학회지
    • /
    • 제20권5호
    • /
    • pp.67-81
    • /
    • 2017
  • Because of lack of accurate understanding of the mechanism of urban heat island (UHI) phenomenon and lack of scientific discussion, it is hard to come up with effective measures to mitigate UHI phenomenon. This study systematically described the UHI and suggested the solutions using green-infrastructure (green-infra). The factors that control UHI are very diverse: radiant heat flux, latent heat flux, storage heat flux, and artificial heat flux, and the air temperature is formed by the combination effect of radiation, conduction and convection. Green-infra strategies can improve thermal environment by reducing radiant heat flux (the albedo effect, the shade effect), increasing latent heat flux (the evapotranspiration effect), and creating a wind path (cooling air flow). As a result of measurement, green-infra could reduce radiant heat flux as $270W/m^2$ due to shadow effect and produce $170W/m^2$ latent heat flux due to evaporation. Finally, green-infra can be applied differently on the macro(urban) scale and micro scale, therefore, we should plan and design green-infra after the target objects of structures are set.

한국인의 온열쾌적감 및 생리신호에 관한 연구 (Part III: 상하온도차에 관한 실험 결과) (Experimental study on thermal comfort sensation and physiological responses of Koreans in various thermal conditions Part III : The effects of vertical air temperature difference in a room)

  • 김동규;배동석;금종수;최광환;김성일;임금식;이구형
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1998년도 춘계학술발표 논문집
    • /
    • pp.264-269
    • /
    • 1998
  • 본 연구에서는 겨울철 대류 난방시 발생하기 쉬운 실내 기온의 상하분포가 인체에 미치는 영향에 관하여 청년층의 피험자를 대상으로 한 체감실험을 수행하여 인체의 생리 및 심리반응에 미치는 영향을 검토하였다. 체감 실험 결과 아래와 같은 결론을 얻었다. 1) 머리부위 공기온도가 23$^{\circ}C$ 인 경우 두한족열의 경우가 두열족한의 경우에 비하여 전신온냉감 및 쾌불쾌감이 양호한 것으로 나타났다. 2)두열족한의 경우 발 부위가 서늘하다는 비율은 상하온도차가 증가($\Delta$t 3$^{\circ}C$ ->6$^{\circ}C$)하면 역시 증가하였고, 두한족열의 경우 머리 부위 온도 23$^{\circ}C$에서는 발부위온도를 증가시키면($\Delta$t 3$^{\circ}C$->6$^{\circ}C$)불쾌 비율이 증가하는 경향을 나타냈다. 3) 신체 부위별 온열감과의 관계를 보면 어깨부위에서 느끼는 온열감이 전반적으로 쾌불쾌감 및 전신온냉감과 유의차를 나타냈다. 얼굴 부위에서의 온열감은 머리부위 공기온도 $25^{\circ}C$이상에서 쾌불쾌감과 유의차를 나타냈고, 발 부위에서의 온열감은 머리부위 공기온도 $25^{\circ}C$ 이하에서 전신온냉감과 유의차를 나타냈다.

  • PDF

분리막 제습공조시스템의 잠열부하 저감효과 예측 (Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane)

  • 정용호;박성룡
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

도시기후 평가와 방재를 위한 도시기상 수치모의 (Numerical Simulation for Urban Climate Assessment and Hazard)

  • 오성남
    • 한국방재학회지
    • /
    • 제2권4호
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

분리막 제습공조시스템의 내부 유동 해석에 관한 연구 (A Study on Air Flow Analysis for the Internal Space of the Dehumidifying Air-Conditioning System with A Membrane)

  • 정용호;박성룡
    • 설비공학논문집
    • /
    • 제27권12호
    • /
    • pp.620-625
    • /
    • 2015
  • The summer climate is very hot and humid in Korea. Humidity is an important factor in determining thermal comfort. Recently, research on dehumidification device development has been attempted to save the energy required for operating the dehumidifier. Existing dehumidification systems have disadvantages such as wasting energy to drive the compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature. Therefore. they don't have to consume cooling energy. In this paper, the installation conditions for a membrane system were analyzed to improve the shape and optimum performance of the system. The results showed that the distance between elements was the critical system design factor, and that a distance of 20 mm was the optimal condition for the pressure drop and flow characteristics of the internal air flow.

철도 전동차내의 쾌적성 평가에 관한 연구 - 온도 및 습도를 중심으로 - (Evaluation of Comfortableness in Railroad Electric Rolling Stock - Focused on Temperature and Humidity -)

  • 박덕신;배상호;정병철;이주열
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.41-48
    • /
    • 2003
  • Most of people spends their times in indoor about 85% of a day. Thus, indoor is more serious than outdoor concerned with the health. We discussed comfortableness in a railroad electric rolling stock, and focused on temperature and humidity. Electric rolling stock is one of major public transportation system because of an increasing in population and heavy traffic problems. The passengers are under the influence of indoor air quality such as air temperature, relative humidity and air velocity. Ventilation system in electric rolling stock should be designed for the health and comfort. One of the main aims is to create an acceptable thermal environment without draught problem. The draught sensation increases when the air temperature decreases and the air velocity increases. Airflow in electric rolling stork is turbulent. Temperature and humidity gradients in electric rolling stock have been studied. And, the difference between mean temperature and rotative humidity measured at 0.7, 0.9, 1.2, 1.7m above the floor. It has been found that temperature and relative humidity with large fluctuations caused more draught complaints.

겨울철 난방시 탑상형 아파트 구조체의 축·방열 특성에 대한 현장측정 연구 (A Field Measurement Study on Heat Storage/Emission Characteristics of Tower Type Apartment Structures in Winter Season)

  • 장현재;조근제
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.190-195
    • /
    • 2012
  • In this study, as a complementary study of the former study on indoor thermal environment in a tower type apartment house at tropical nights, a field measurement was conducted in winter season. Mainly, characteristics of heat storage and heat emission in apartment structures, in this study, were investigated. As results, indoor air temperature was changed in the range of $22.5^{\circ}C{\pm}1.0^{\circ}C$, and followed not the change of outdoor air temperature but the changed pattern of floor surface temperature. Wall surface temperature was unresponsive to the change of floor surface temperature compared with the change of indoor air temperature because wall structure was composed of concrete which has large heat capacity, and was changed in the range of $22.3^{\circ}C{\pm}0.6^{\circ}C$. Heat was stored continuously into the structures of wall and ceiling through the measurement term. and this means that a large heat capacity of the apartment structure acts as a disadvantage in winter season, too. As a total review of the study with the former study, a large heat capacity of the apartment structure acts against indoor thermal comfort in winter season as well as in summer season.