• Title/Summary/Keyword: Thermal-Comfort

Search Result 701, Processing Time 0.247 seconds

CFD 해석을 통한 하이브리드 공조시스템의 인체 온열감의 불균일성에 관한 연구 (Study on Non-uniform Thermal Comfort in Hybrid Air-Conditioning System with CFD Analysis)

  • 남유진;성민기;송두삼
    • 설비공학논문집
    • /
    • 제23권3호
    • /
    • pp.216-222
    • /
    • 2011
  • Recently, hybrid air-conditioning system has been proposed and applied to achieve building energy saving. One example is a system combining radiation panel with natural wind-induced cross-ventilation. However, few research works have been conducted on the non-uniformity of thermal comfort in such hybrid air-conditioning system. In this paper, both thermal environment and non-uniform thermal comfort of human thermal model under various air-conditioning system, including hybrid system, were evaluated in a typical office room using coupled simulation of computation fluid dynamics, radiation model and a human thermal model. The non-uniformity of thermal comfort was evaluated from the deviation of surface temperature of human thermal model. Flow fields and temperature distribution in each case were represented.

여름철 사무실내 온열환경 특성 및 쾌적성 평가 (Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer)

  • 이철희;배귀남;최항철;이춘식
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

차세대전동차의 실내온열환경 연구 (Study on Indoor Thermal Comfort of Advanced EMU)

  • 권순박;박덕신;조영민;박성혁;오세찬;김영남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1799-1802
    • /
    • 2008
  • More than 7 million people use the Seoul metropolitan subway network daily. This number tends to increase due to the increase of oil price. Indoor air quality of electrical multiple unit (EMU) is strongly affected by outdoor air quality, however, indoor thermal comfort is subjected to heating, ventilating, and air conditioning (HVAC) system of EMU. In general, air temperature, humidity, air velocity, surface temperature, and illumination are key parameters affecting thermal comfort of passenger. It is known that the well-designed HVAC system should improve the thermal comfort of passengers and should increase the energy efficiency of HVAC system also. In this study, we analyzed the thermal comfort of advanced EMU developed by Korea Railroad Research Institute by using the computational fluid dynamics (CFD) in order to find the optimum HVAC system which can improve thermal comfort of passengers with a minimal energy use.

  • PDF

바닥공조시스템에서 복사온도가 열적쾌적성에 미치는 영향 (Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System)

  • 정재동;홍희기;유호선
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.15-20
    • /
    • 2006
  • Despite the fact that UFAD (Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of design parameters on the performance of UFAD, especially focused on thermal comfort. The design parameters considered in this study include supplied air temperature, supplied flow rate, diffuser shape, swirl, diffuser location, and floor-to-floor height. Also this study has compared UFAD with over head system, on the point of thermal comfort by evaluating PMV using radiative mean temperature, which shows how inadequate the evaluation of thermal comfort can be when radiation is neglected. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.

  • PDF

국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구 (Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module)

  • 이채열 ;임종한;이재욱;박상희
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

온도변동에 따른 인체 생리적 반응 -제2보: 맥파를 중심으로- (Physiological Response of Human Body by Temperature Change -Part 2: In Priority to Pulse wave-)

  • 강석중;금종수;김동규;정용현;이낙범
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.23-28
    • /
    • 2007
  • In most existing research, it is difficult to evaluate thermal comfort exactly because of reflecting individual ideal or psychological response by subjective questions. Physiological variable was selected in this study to evaluate objectively thermal comfort. MST was appeared very sensitively in indoor temperature and can express correctly thermal comfort of human body. The results of CSV are different each individual feeling sensation, so is difficult to evaluate detailedly thermal comfort unlike TSV. But the results of PP, AIx, ED, SEVR are greatly related to temperature change. So thermal comfort is evaluated more objectively by using PP, AIx, ED, SEVR on behalf of TSV, CSV. Human body was presented physiological feedback by temperature impetus and specially, tendency of heart rate agree with temperature change. Physiological reaction was showed sufficient possibility availing evaluation index of thermal comfort. In the future another one needs to review beside the selected physiological variable.

  • PDF

온열감각 기반 습도제어를 통한 여름철 건물의 열쾌적 및 에너지성능 향상 (Thermal sensation based humidity controls for improving indoor thermal comfort and energy efficiency in summer)

  • 문진우;진경일;김상철;이광호
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.75-81
    • /
    • 2014
  • This study aims at investigating the benefit of actively controlling humidity to improve thermal comfort and energy efficiency in climate zones other than hot-dry. For this research purpose, three thermal control strategies, which adopted different initiative degrees in humidity control, were developed - i) temperature controls, ii) temperature and humidity controls, and iii) thermal sensation controls. Performance of the developed strategies were experimentally tested in a full scale mock up of an office environment. The study revealed that air temperature was better controlled in the occupied zone under the first two strategies than the thermal sensation based strategy. On the other hand, the thermal sensation-based strategy maintained thermal sensation levels more comfortably. In addition, energy consumption was significantly reduced when humidity was actively controlled for thermal comfort. The thermal sensation-based control strategy consumed significantly less electricity than the first two strategies. From these findings, this study indicated that adoption of an active humidity control system based on thermal sensation can provide increased thermal comfort as well as energy savings for summer seasons in climatic zones other than hot-dry.

온열환경기준에 따른 여름철 사무실의 열쾌적성 평가 (A Field Survey of Thermal Comfort in Office Building with Thermal Environment Standard)

  • 공효주;윤근영;김정태
    • KIEAE Journal
    • /
    • 제11권3호
    • /
    • pp.37-42
    • /
    • 2011
  • This study aims to analyze the field survey of thermal comfort in office building with national thermal environment standard. Internal and external temperatures were measured at ten minute intervals and compared in accordance with the national standard for thermal environment. Sixty two workers filled in the questionnaire survey forms five times a day for 40 days. Field monitoring of offices in Seoul, Korea were conducted from 20 July to 28 August. Result for the comfort temperature was set a $26.30^{\circ}C$. This indicates that the 26 degree is reliable for the Korean standard. Indoor temperature standard can reduce energy use by air-conditioned buildings and the temperature would be offer comfort to occupants.

고령자 온열 쾌적감 간이 측정방법 개발에 관한 연구 (Study for the development of portable thermal comfort measurement tool for elderly)

  • 배치혜;이현정;전정윤
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.15-20
    • /
    • 2009
  • The purpose of this study is to develop of portable thermal comfort measurement tool for elderly. Using prediction expression of thermal comfort for elderly which derived at previous study, a field studies were conducted. The objects of this survey are old persons over 60 years old and total 296 (male:111 persons, female:145 persons) persons were measured. The actual thermal sensation was compared with predicted thermal sensation calculated with PMV model, and the results shows that there were no correlation between them. Also, appling cheek temperature and hand temperature were useful to predict thermal sensation of elderly people. Especially, predicted thermal sensation using cheek temperature were closely connected with actual thermal sensation of elderly and presented most similar trend to actual thermal sensation.

  • PDF

사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험 (Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems)

  • 조용;권혁승;김성현;김영일
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF