• Title/Summary/Keyword: Thermal-Comfort

Search Result 701, Processing Time 0.022 seconds

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Numerical Simulation on the Wind Ventilation Lane and Air Pollutants Transport due to Local Circulation Winds in Daegu Districts (대구지역의 국지순환풍의 환기경로 및 대기오염수송에 관한 수치모의)

  • Koo, Hyun-Suk;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.418-427
    • /
    • 2004
  • Recently, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane is widely practiced in many countries. The concept of urban ventilation lane is mainly aimed to improve the thermal comfort within urban area in summer season. It has also the aim to reduce the urban air pollution by natural cold air drainage flows which are to be intensified by a suitable alignment of buildings as well as use zonings based on scientific reasons. In this study, the prevailing wind ventilation lane of a local wind circulation and around Daegu for a typical summer days was investigated by using a numerical simulation. The transport of air pollutants by the local circulation winds was also investigated by using the numerical simulation model, the RAMS (Reasonal Atmospheric Model System).The domain of interest is the vicinity of Daegu metropolitan city (about 900 km2). The horizontal scale of the area is about 30 km. The simulations were conducted under a late spring synoptic condition with weak gradient wind and almost clear sky. From the numerical experiment, the following three conclusions were obtained: (1) The major wind passages of the local circulation wind generated by radiative cooling over the representative mountains of Daegu (Mt. Palgong and Mt. Ap) were found. The winds blow down along the valley axis over the eastern part of Daegu as a gravity flow during nighttime. (2) At the flatland, the winds blow toward the western part of Daegu through the city center. (3) As the results, the air pollutants were transported toward the western part of Daegu by the winds during nighttime.

Heat Stress Assessment and the Establishment of a Forecast System to Provide Thermophysiological Indices for Harbor Workers in Summer (하계 항만열환경정보 제공을 위한 열환경 평가 및 예보시스템 구축)

  • Hwang, Mi-Kyoung;Yun, Jinah;Kim, Hyunsu;Kim, Young-Jun;Lim, Yeon-Ju;Lee, Young-Mi;Kim, Youngnam;Yoon, Euikyung;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.92-101
    • /
    • 2016
  • Objectives: Outdoor workers are exposed to thermally stressful work environments. In this study, heat stress indices for harbor workers in summer were calculated to evaluate thermal comfort based on a human heat balance model. These indices are Physiological Subjective Temperature (PST), Dehydration Risk (DhR), and Overheating Risk (OhR) according to respective stage of cargo work in a harbor. In addition, we constructed a forecast system to provide heat stress information. Methods: Thermophysiological indices in this study were calculated using the MENEX model (i.e. the human heat balance model), which used as inputs the meteorological parameters, clothing insulation, and metabolic rate for each stage of cargo work in the harbor of Masan over the course of seven days, including a four-day heat wave. The forecast heat stress information constructed for Masan harbor was based on meteorological data supported by the Dong-Nae Forecast from the KMA (Korea Metrological Administration) and other input parameters. Results: According to higher metabolic rate, thermophysiological indices showed a critical level. In particular, PST was evaluated as reaching the 'Very hot' or 'Hot' level during all seven days, despite the heat occurring over only four. It is important in a regard to consider the work environment conditions (i.e. labor intensity and clothing in harbor). On a webpage, the forecast thermophysiological indices show as infographics to be easily understand. This webpage is comprised of indices for both current conditions and the forecast, with brief guidance. Conclusion: Thermophysiological indices show the risk level to health during a heat wave period. Heat stress information could help to protect the health of harbor workers. Further, this study could extend the applicability of these indices to a variety of outdoor workers in consideration of work environments.

Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market (냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.312-321
    • /
    • 2018
  • The Korean DR market proposes suppression of peak demand under reliability crisis caused a natural disaster or unexpected power plant accidents as well as saving power plant construction costs and expanding amount of reserve as utility's perspective. End-user is notified a DR event signal DR execution before one hour, and executes DR based on requested amount of load reduction. This paper proposes a DR energy management algorithm that can be scheduled the optimal operations of chiller system and ESS in the next day considering the TOU tariff and DR scheme. In this DR algorithm is divided into two scheduling's; day-ahead operation scheduling with temperature forecasting error and operation rescheduling on DR operation. In day-ahead operation scheduling, the operations of DR resources are scheduled based on the finite number of ambient temperature scenarios, which have been generated based on the historical ambient temperature data. As well as, the uncertainties in DR event including requested amount of load reduction and specified DR duration are also considered as scenarios. Also, operation rescheduling on DR operation day is proposed to ensure thermal comfort and the benefit of a COB owner. The proposed method minimizes the expected energy cost by a mixed integer linear programming (MILP).

Seasonal variation in growth of Berkshire pigs in alternative production systems

  • Park, Hyeon-Suk;Oh, Sang-Hyon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.749-754
    • /
    • 2017
  • Objective: The objective of the present study was to investigate the effects of farrowing month (FM), parity and sex on the growth performance of Berkshire swine raised in alternative production systems. Methods: A total of 40 farrowing records from 27 sows and 1,258 body weight (BW) records from 274 piglets collected over a two-year period were used for the analysis. The BWs were recorded at birth, weaning (28 d), 56, 84, 112, and 140 days. Any BW not recorded on schedule was recalculated to conform the days of age among corresponding BW records, using growth curves drawn with polynomial functions whose power was determined by the number of existing observations for each individual. Results: The mean parity (${\pm}$standard deviation) of the sows was $3.42{\pm}2.14$. The sows that farrowed in June had the lowest number of total born with an average of $6.25{\pm}2.22$ piglets per sow. However, the lowest average number of piglets weaned at day 28 was found in sows that farrowed in May, as well as the highest number recorded for the stillborn piglets with an average of 2.67 piglets per sow. Moreover, the smallest increase in weight from birth to weaning occurred in piglets that were farrowed in May, which also corresponds with the average daily gain (ADG) of 0.29 kg and the last recorded weight measurement on day 140 of $41.69{\pm}1.45kg$. Contrastingly, the highest growth rate was found among pigs farrowed in June, with the largest increase in weight of 7.55 kg from birth to weaning, the highest ADG of 0.51 kg from birth to 140 day of age and the highest BW of $74.70{\pm}1.86kg$ recorded on day 140. Conclusion: Pigs farrowed in June also had the least number of piglets that died between birth and weaning. The zone of thermal comfort found in sows reared in indoor confinement systems did not improve the reproductive performance of the sows reared in an outdoor, alternative production system, while the growth performance of the piglets was improved when the ambient temperature was consistently hot or consistently cold.

Change of Oxygen Uptake, Heart Rate, Blood Pressure with Body Fat Rate in AM and PM (체지방에 따른 오전과 오후의 산소섭취량, 심박수, 혈압의 변화)

  • Lee, Jung-Sug;Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.7 no.3
    • /
    • pp.321-326
    • /
    • 2005
  • The purpose of this study was to investigate the effect of body fat on energy metabolic response and subjective sensations under the hot environment. Fifteen female university students volunteered as subjects. We organized subjects into three groups: low body fat group(group L : less than 20% of body fat), medium body fat group(group M : 20%~30% of body fat) and high body fat group(group H: more than 30% of body fat). The experiment was conducted with $32^{\circ}C$, 60%RH. The subjects repeated 'Exercise' and 'Rest' period. The results of this study are as follows ; The oxygen uptake value of AM is higher than PM. The value of group H is the highest in three fat groups. But it showed group L is the highest in oxygen uptake per weight. %body fat is the lower, oxygen uptake is the higher. In Calorie, group L has higher value in AM in than in PM. In M group and group H, a value of PM is higher than AM. In group H, difference of AM and PM is the highest. From a view point of three groups, a value of group H is the highest. This support that calorie increases as oxygen uptake increase. The heart rate values of group L and group H are the higher in AM than in PM. This support that heart rate was relation to oxygen uptake. In all three groups, the value of blood pressure is higher in AM than in PM. Subjective sensations of temperature sensation, thermal comfort, and wetness sensation are higher in Am than in Pm. This explains that subject sensations are similar to experimental data, such as oxygen uptake, heart rate, blood pressure. In oxygen uptake, heart rate and blood pressure, general tend to showed higher AM than PM. This showed that heart rate, oxygen uptake increase in AM, as blood pressure increase, too. From a view point of %body fat, group H is higher than the others in oxygen uptake, heart rate and blood pressure.

A Study on Experiments the Environmental Conditions and the Adaptation of the Human Body in the Vinyl House (Vinyl House 내의 환경조건과 인체적응에 관한 실험연구)

  • Shim, Bu-Ja
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.59-73
    • /
    • 1994
  • The purpose of this study is to experiments the environmental conditions and the adaption of the human body in the vinyl house. The study was done in spring and winter and experimental clothes were used working clothes in the vinyl house. The results are as follows. 1. Environmental Conditions In the spring season, the indoor air temperature was $27.4{\pm}3.7^{\circ}C$ and the outdoor air temperature was $14.4{\pm}2.7^{\circ}C$. In the winter season, the indoor air temperature was $18.3{\pm}4.8^{\circ}C$ and the outdoor air temperature was $7.6{\pm}2.5^{\circ}C$ on the average. 2. Skin Temperature In the spring season, the mean skin temperatures indoor and outdoor were $33.81{\pm}0.7^{\circ}C\;and\;31.57{\pm}0.8^{\circ}C$ respectively, a difference of $2.24^{\circ}C$. In the winter season, they were $31.95{\pm}1.93^{\circ}C\;and\;29.86{\pm}0.55^{\circ}C$ respectively, a difference of $2.09^{\circ}C$. 3. Clothing Climate In the spring season, the temperature and humidity in the inner layer of clothing were $34.77{\pm}0.80^{\circ}C\;and\;70.75{\pm}1.65%$ indoor, $31.9{\pm}0.52^{\circ}C\;and\;51.9{\pm}3.70%$ outdoor respectively. In the winter season, those were $32.52{\pm}1.04^{\circ}C\;and\;64.65{\pm}3.68%$ indoor, $30.27{\pm}0.96^{\circ}C\;and\;45.07{\pm}2.68%$ outdoor respectively. 4. Physiological Factors Body temperature increased slightly and the pulse rate also rises, but blood pressure decreased a little with the rise of environmental temperature both in the spring and winter seasons. 5. Psychological Factors Thermal sensation in the spring season was expressed as 'slightly warm' or 'warm' indoor and as 'neutral' in the open air, while in the winter it was expressed as 'neutral' or 'slightly warm' outdoor the house and as 'cold' in the open air. Comfort sensation was characterized as 'uncomfortable' or 'slightly uncomfortable' indoor both in the spring and winter seasons, but in the open air it was characterized as 'comfortable' in the spring and as 'slightly uncomfortable' in the winter.

  • PDF