• 제목/요약/키워드: Thermal waste water

검색결과 215건 처리시간 0.024초

효소분해법에 의한 개량어장유의 속성제조 및 품질에 관한 연구 2. 정어리 폐기물을 이용한 어장유의 속성제조 및 품질 (Conditions for Rapid Processing of Modified Fish Sauce using Enzymatic Hydrolysis and Improvement of Product Quality 2. Fish Sauce from Sardine Waste and Its Quality)

  • 배태진;한봉호;조현덕;김종철;김병삼;최수일
    • 한국수산과학회지
    • /
    • 제23권2호
    • /
    • pp.125-136
    • /
    • 1990
  • To develope a rapid processing method for fish sauce, processing conditions of fish sauce from sardine waste was investigated. The chopped waste was homogenized and hydrolyzed by commercial proteolytic enzymes such as Complex enzyme-2000($2.18\cdot10^4$ U/g solid) and Alcalase($1.94\cdot10^4$ U/g solid) in a cylindrical vessel with 4 baffles and 6-bladed turbine impeller. Optimal temperature for the case of hydrolysis with Complex enzyme-2000 was 50 and that with Alcalase was $55^{\circ}C$. In both cases, the reasonable pH, amount of water for homo-genization, enzyme concentration and hydrolyzing time were 8.0, $40\%$ (W/W), $3\%$ and 100 min, respectively. Heating of the filtrated hydrolysate for 2 hours at $90^{\circ}C$ with $6\%$ of invert sugar was suitable for pasteurization of the hydrolysate and inactivation of enzymes. Flavor, taste and color of the hydrolysate was improved during the thermal treatment in which the browning reaction products might participate and result in antioxidative and bactericidal effects. Combined use of $0.005\%$ of Caryophylli flos with invert sugar was also effective for the improvement of taste. Yield of the fish sauce based on the total nitrogen in the raw sardine waste was $91.2\~92.3\%$ and $87.2\~87.8\%$ of the total nitrogen in the fish sauce was in the form of amino nitrogen. The pH, salinity and histamine content of the fish sauce prepared with $15\%$ of table salt were $6.1\~6.2$, $14.2\~14.4\%$ and less than $10mg\%$, respectively. The fish sauce was stable during the storage of 60 days at $26\pm3^{\circ}C$ on bacterial growth and its quality was also maintained.

  • PDF

기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가 (Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method)

  • 윤석;방현태;김건영;전해민
    • 대한토목학회논문집
    • /
    • 제41권2호
    • /
    • pp.123-131
    • /
    • 2021
  • 완충재는 고준위 방사성 폐기물을 처분하기 위한 공학적 방벽 시스템에서 중요한 구성요소 중 하나이며 사용 후 핵연료가 담긴 처분용기와 암반사이에 채워지는 물질이기 때문에 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하는 중요한 역할을 수행한다. 따라서 공학적 방벽 시스템의 처분용기로부터 발생하는 고온의 열량은 완충재를 통하여 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 매우 중요하다. 본 연구에서는 국내에서 생산되는 압축 벤토나이트 완충재의 열전도도 예측을 위한 경험적 회귀 모델의 정합성을 검증하고 정확도를 높이기 위해 예측모델의 구축에 기계학습법을 적용해 보았다. 벤토나이트의 건조밀도, 함수비 및 온도 값을 바탕으로 열전도도를 예측하고자 하였으며, 이때 다항 회귀, 결정 트리, 서포트 벡터 머신, 앙상블, 가우시안 프로세스 회귀, 인공신경망, 심층 신뢰 신경망, 유전 프로그래밍과 같은 기계학습 기법을 적용하였다. 기계학습 기법을 이용하여 예측한 결과, 부스팅 기반의 앙상블 기법, 유전 프로그래밍, 3차 함수 기반의 SVM, 가우시안 프로세스 회귀의 기계학습기법을 활용한 모델이 선형 회귀 분석 기법에 비해 좋은 성능을 보였으며, 특히 앙상블의 부스팅 기법과 가우시안 프로세스 회귀 기법을 사용한 모델들이 가장 좋은 성능을 보였다.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

석탄회 산업폐기물로부터 제조한 메조다공성 실리카소재를 촉매로 사용하는 Knoevenagel 수용액 반응 (Knoevenagel Reaction in Water Catalyzed by Mesoporous Silica Materials Synthesized from Industrial Waste Coal Fly Ash)

  • Dhokte, Aashish O.;Khillare, Santosh L.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • 대한화학회지
    • /
    • 제55권3호
    • /
    • pp.430-435
    • /
    • 2011
  • 화력발전소에서 배출되는 석탄회를 이용하여 메조다공성 소재인 MCM-41을 제조하였다. 제조한 소재는 XRD, FTIR, SEM 및 EDS 방법으로 특성을 규명하였다. 이 소재의 촉매활성을 방향족 알데히드와 malonontrile의 Knoevenagel축합 반응에서 5-arylindene malononitriles의 합성에 대해 연구하였다. 이 방법의 특징은 쉬운 취급법, 안정성, 촉매의 재사용 및 생태친화성, 고수율, 짧은 반응시간, 간단한 실험과정 및 마무리 절차 등을 들 수 있다.

냉음극형 대면적 펄스 전자빔 가속기의 빔인출 특성 (Characteristics of Electron Beam Extraction in Cold Cathode Type Large Cross-Sectional Pulsed Electron Beam Generator)

  • 우성훈;이광식;이동인;이홍식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1609-1611
    • /
    • 2001
  • A large cross-section pulsed electron beam generator of cold cathode type has been developed for industrial applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. The conventional electron beam generators need an electron scanning beam because the small cross section thermal electron emitter is used. The electron beam of large cross-section pulsed electron beam generator do not need to be scanned over target material because the beam cross section is large by 300$cm^2$. We have fabricated the large cross-sectional pulsed electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large area electron beam in the air. The electron beam current has been investigated as a function of accelerating voltage, glow discharge current, helium pressure, distance from the exit window and radial distribution in front of the exit window.

  • PDF

Manufacturing of Ultra-light Ceramsite from Slate Wastes in Shangri-la, China

  • Li, Zhen;Zhang, Haodong;Zhao, Pengshan;He, Xiaoyun;Duan, Xiaowei
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.36-43
    • /
    • 2018
  • The physical and chemical analyses of mineral waste such as moisture content, water absorption, freezing-thawing resisting sexual, chemical composition and crystal structure were investigated. In the technological process of crushing, screening, molding, drying, preheating, sintering and cooling, many parameters were changed to eliminate the influence of freeze thaw stability and the ball billets were processed into slate ceramsites eventually. Adopting orthogonal experiment and range analysis, the optimal technology parameters were confirmed as preheating temperature of $300^{\circ}C$ for 25 minutes and sintering temperature of $1230^{\circ}C$ for 20 minutes. Slate wastes in Shangri-la could foam and expand without any additive. The ultra-light ceramsite could be directly used as building aggregate, since the analysis results of its leaching toxicity were eligible. Besides, effects of sintering temperature on physical property and crystal phase were also explored in this study.

The influence of air gaps on buffer temperature within an engineered barrier system

  • Seok Yoon;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4120-4124
    • /
    • 2023
  • High-level radioactive waste produced by nuclear power plants are disposed subterraneously utilizing an engineered barrier system (EBS). A gap inevitably exists between the disposal canisters and buffer materials, which may have a negative effect on the thermal transfer and water-blocking efficiency of the system. As few previous experimental works have quantified this effect, this study aimed to create an experimental model for investigating differences in the temperature changes of bentonite buffer in the presence and absence of air gaps between it and a surrounding stainless steel cell. Three test scenarios comprised an empty cell and cells partially or completely filled with bentonite. The temperature was measured inside the buffers and on the inner surface of their surrounding cells, which were artificially heated. The time required for the entire system to reach 100℃ was approximately 40% faster with no gap between the inner cell surface and the bentonite. This suggests that rock-buffer spaces should be filled in practice to ensure the rapid dissipation of heat from the buffer materials to their surroundings. However, it can be advantageous to retain buffer-canister gaps to lower the peak buffer temperature.

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond: Part II, Macrophytes and fish

  • Aleksei Panov ;Alexander Trapeznikov;Vera Trapeznikova ;Alexander Korzhavin
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.707-716
    • /
    • 2023
  • The influence of waste technological waters of thermal and fast reactors of Beloyarsk NPP (Russia) on the accumulation of 60Co, 90Sr and 137Cs in macrophytes and ichthyofauna of the cooling pond has been studied. Critical radionuclides, routes of their entry into the ecosystem and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at the Beloyarsk NPP, based on fast reactors, has a much smaller effect on the release of artificial radionuclides into the environment. Therefore, during the entire period of monitoring studies (1976-2019), the decrease in the specific activity of radionuclides of NPP origin in macrophytes was 13-25800 times, in ichthyofauna 1.5-44.5 times. The maximum discharge of artificial radionuclides into the Beloyarsk reservoir was noted during the period of restoration and decontamination work aimed at eliminating the emergencies at the AMB reactors of NPP. The factors influencing the accumulation of artificial radionuclides in the components of the freshwater ecosystem of the Beloyarsk cooling pond have been determined, including: the physicochemical nature of radioisotopes, their concentration in surface water, the temperature of the aquatic environment, the trophicity of the reservoir, the species of hydrobionts.

온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성 (Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

고분자전해질 연료전지의 중저온 열원을 건물난방에 이용하기 위한 온도 제어장치 개발 (Development of Temperature Control System to use in Building Heating of low Temperature Heat of PEMFC)

  • 차광석;김회서
    • 플랜트 저널
    • /
    • 제10권3호
    • /
    • pp.45-51
    • /
    • 2014
  • 본 연구에서는 기존 가정용연료전지에서 활용이 미약한 중저온의 배열을 건물난방부하에 적용할 수 있도록 온도 안정화 장치를 개발하였으며 이 장치가 기존 난방설비와 연계가 가능하도록 제어시스템을 구축하였다. 연료전지 시스템의 정상작동을 위해서는 연료전지로부터 배출되는 온수의 공급온도가 $60^{\circ}C$이어야 하고 다시 연료전지로 회수되는 작동 유체의 환수온도는 항상 $55^{\circ}C$로 유지하여야 한다. 본고에서는 먼저 스택배열 활용을 극대화하기 위해 CFD 분석을 통해 소형열교환기와 기존 난방설비배관과의 최적 연계장치시스템을 구성하였다. 또한 계절별 난방 수온의 불규칙한 온도변화에 대응하기 위해서 연료전지 스택의 열원과 아파트세대 난방용 환수관을 연결한 온도자동조절 밸브를 사용하여 온도안정화 장치를 개발하였다. 소형열교환기와 통합 활용할 수 있도록 설정된 온수의 온도가 편차 ${\pm}0.5^{\circ}C$ 이내에서 유지되도록 하였다. 이 연구결과를 통해 연료전지인 PEMFC의 배열을 건물난방부하에 활용이 추후 가능할 것으로 예상된다.

  • PDF