• Title/Summary/Keyword: Thermal thickness

Search Result 2,082, Processing Time 0.029 seconds

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

The Effect of Thermal Concentration in Thermal Chips

  • Choo, Kyo-Sung;Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2449-2452
    • /
    • 2007
  • Hot spots on thin wafers of IC packages are becoming important issues in thermal and electrical engineering fields. To investigate these hot spots, we developed a Diode Temperature Sensor Array (DTSA) that consists of an array of 32 ${\times}$32 diodes (1,024 diodes) in a 8 mm ${\times}$ 8 mm surface area. To know specifically the hot spot temperature which is affected by the chip thickness and a generated power, we made the DTSA chips, which have 21.5 ${\mu}m$, 31 ${\mu}m$, 42 ${\mu}m$, 100 ${\mu}m$, 200 ${\mu}m$, and 400 ${\mu}m$ thickness using the CMP process. And we conducted the experiment using various heater power conditions (0.2 W, 0.3 W, 0.4 W, 0.5 W). In order to validate experimental results, we performed a numerical simulation. Errors between experimental results and numerical data are less than 4%. Finally, we proposed a correlation for the hot spot temperature as a function of the generated power and the wafer thickness based on the results of the experiment. This correlation can give an easy estimate of the hot spot temperature for flip chip packaging when the wafer thickness and the generated power are given.

  • PDF

Investigation on stability characteristics of 2G HTS coated conductor tapes with various stabilizer thickness

  • Quach, Huu Luong;Kim, Ji Hyung;Hyeon, Chang Ju;Chae, Yoon Seok;Moon, Jae Hyung;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.19-22
    • /
    • 2018
  • The thermal and electrical properties of the conductor are critical parametersfor the design and optimization of the superconducting magnet. This paper presents simulation code to analyze electrical and thermal stability characteristics of the second generation (2G) high-temperature superconductor (HTS) by varying copper stabilizer thickness. Two types of commercial 2G HTS coated conductor tapes, YBCO and GdBCO were used in this study. These samples were cooled by Liquid Nitrogen ($LN_2$) having boiling at 77.3 K and an equivalent electrical circuit model for them is choosen and analysed in details. Also, an over-current pulse test in which a current exceeding a critical current was performed. From the simulation results, the influences of the copper stabilizer thickness on the stability characteristics of these samples are presented.

Effects of thickness variations on the thermal elastoplastic behavior of annular discs

  • Wang, Yun-Che;Alexandrov, Sergei;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.839-856
    • /
    • 2013
  • Metallic annular discs with their outer boundary fully constrained are studied with newly derived semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in this work. The material properties, Young's modulus, yield stress and thermal expansion coefficient, are assumed temperature dependent, while the Poisson's ratio is assumed to be temperature independent. It is found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature difference between the elastically reversible temperature and plastic collapse temperature is a monotonically decreasing function of inner radius. For small holes, the n values have strong effects on the normalized temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the strain distributions when temperature-dependent material properties are considered.

The Effect of Temperature Reduction as Influenced by Rooftop Greening (옥상녹화조성에 따른 온도저감효과에 관한 연구 -서울대학교 실험구를 중심으로-)

  • Lee, Dong-Kun;Yoon, So-Won;Oh, Seung-Hwan;Jang, Seong-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.6
    • /
    • pp.34-44
    • /
    • 2005
  • The objective of this study is to analyze the thermal properties of various green roof type. The experimental districts, have different soil thickness, soil type, the existence of module and the different kinds of vegetation, had installed. A measurement was conducted in Seoul University to investigate the thermal impacts of rooftop greening. The measurement point of temperature were 30, located in soil surface, middle of the soil layer, under the module, hard surface and soffit surface of each experimental district. The experimental investigation lasted from 6th August to 29th August, a total of 24 days. The results showed that green roof can contribute thermal benefits by soil and vegetation and reduce building energy consumption by a role of insulation. It's also better to make soil thickness over 20cm and various vegetation that should be more effective. The district installed only soil also could be effective for reducing the temperature of roof surface. Therefore, the increase of soil thickness and various vegetation could reduce more temperature of roof surface and building energy consumption. Also, it's helpful to reduce temperature that plant coverage rate be raised.

Estimation of the Thickness and the Material Combination of the Thermal Stress Control Layer (TSCL) for the Stellite21 Hardfaced STD61 Hot Working Tool Steel Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 Stellite21 초합금으로 하드페이싱된 STD 61 열간금형강의 열응력제어층 재료조합 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu;Oh, Jin-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.857-862
    • /
    • 2014
  • The research on a thermal stress control layer (TSCL) begins to undertake to reduce residual stress and strain in the vicinity of the joined region between the hardfacing layer and the base part. The goal of this paper is to estimate the material combination and the thickness of TSCL for the Stellite21 hardfaced STD61 hot working tool steel via three-dimensional finite element analysis (FEA). TSCL is created by the combination of Stellite21 and STD61. The thickness of TSCL ranges from 0.5 mm to 1.5 mm. The influence of the material combination and the thickness of TSCL on temperature, thermal stress and thermal strain distributions of the hardfaced part have been investigated. The results of the investigation have been revealed that a proper material combination of TSCL is Stellite21 of 50 % and STD61 of 50 %, and its appropriate thickness is 1.0 mm.

Clarification of the Thermal Properties of Intumescent Paint and Suggestion of the Required Fire Protection Thickness for Steel and Composite columns (철골 및 합성기둥 내화성능 확보를 위한 내화페인트 열적 물성치 규명과 소요두께 제안)

  • Kim, Sun-Hee;Ok, Chi Yeol;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Other countries(USA, Europe) have performed the fire resistance design of buildings by the alternative performance design methods, which are based on fire engineering theories. However, in Korea, the process on the alternative fire resistance performance design has only suggested without any applications for real steel structures. Therefore, In the case of steel structures stagnant research on refractory measures face difficulties in introducing fire resistance design. In this study, first of all, Intumescent paint was analyze the thermal properties(thermal conductivity, specific heat and density). In Sequence, using the section factor by H-standard section propose of section concrete filled steel tube and hollow. finally presents a reasonable thickness Intumescent paint takes time to target performance of the proposed cross-section steel tube.

Characteristics of Silicon Oxide Films Grown by Rapid Thermal Oxidation (급속일산화법에 의한 실리콘 산화막의 특성)

  • 이귀연;양두영;이재용
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.59-64
    • /
    • 1991
  • Thin (25-103$\AA$) SiO$_2$ films are grown using the rapid thermal oxidation processing at temperatures of 105$0^{\circ}C$-115$0^{\circ}C$ for 5-30 sec, in order to investigate the characteristics of ultra thin oxide. For measuring the thickness of oxide TEM, ellipsometry, and C-V method which is taken in the condition of small surface band bending are used and compared. When neglecting the small deviation affected by both interface state and moisture charge effect, those three methods described above give similar results. In order to examine the effect of rapid thermal annealing, part of samples are annealed in N$_2$ ambient. MOS capacitors are fabricated and the characteristics of I-V and C-V are measured. Measurements show that the activation energy of initial thickness of oxide grown during the ramp-up time is of 1.125eV and the activation energy of the oxidation rate is of 0.98eV. As oxidation temperature is increased, dielectric breakdown field E$_{BD}$ is decreased due to the increase of fixed charge density N$_f$ However, E$_{BD}$ is shown to be decreased as increasing the thickness of oxide. The increase of N$_f$ in the early stage of thermal annealing results in the decrease of E$_{BD}$.

  • PDF

Thermal Stress Due to a Hot - Spot on the Laminated Plate in High Temperature Superconducting Fault Current Limiter (적층판으로 제작된 고온초전도 한류기에 발생한 국부적 열폭주 점에 대한 열응력 해석)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.705-712
    • /
    • 2003
  • Analysis for the thermal stress distribution in the laminated plates containing a hot-spot(local heating region) is performed. It is assumed that the local heating region induces only mechanical stress by the thermal expansion but effect of the thermal conduction is neglected. The region is regarded equivalent to a homogeneous inclusion expanding in a laminated medium. As an example, Au/YBCO/Al$_2$O$_3$laminate which is often employed for High Temperature Superconducting Fault Current Limiter(HTS FCL) has been analyzed. Effects of heat input, thickness of each layer and the got spot size upon the stress distribution in the hot-spot have been investigated. For a constant heat generation into the hot-spot, as the thickness of the Al$_2$O$_3$substrate increases, the stress in the YBCO layer is peculiarly oscillated, and the curvature of laminate has a maximum at a certain thickness of the Al$_2$O$_3$.