• 제목/요약/키워드: Thermal system

검색결과 8,114건 처리시간 0.037초

고속이송계의 열변형오차 자동보정에 관한 연구 (A Study on Automatic Compensation of Thermal Deformation Error for High Speed Feeding System)

  • 고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.57-64
    • /
    • 2007
  • In the recent years, development of machine tool with high speed feeding system have brought a rapid increase in productivity. Practically, thermal deformation problem due to high speed is, however, become a large obstacle to realize high precision machining. In this study, therefore, the construction of automatic error compensation system to control thermal deformation in high speed feeding system with real time is proposed. To attain this purpose, high speed feeding system with feeding speed 60mm/min is developed and experimental equation for relationship between thermal deformation and temperature of ball screw shaft using multiple regression analysis is established. Furthermore, in order to analyze thermal deformation error, compensation coefficient is determined and thermal deformation experiments is carried out. From obtained results, it is confirmed that automatic error compensation system constructed in this study is able to control thermal deformation error within $15{\sim}20{\mu}m$.

  • PDF

A Simple Thermal Model of Fuel Thermal Management System in Aircraft Engine

  • Youngjin Kim;Jeonghwan Jeon;Gonghoe Gimm
    • 항공우주시스템공학회지
    • /
    • 제17권5호
    • /
    • pp.11-18
    • /
    • 2023
  • The architecture of the Fuel Thermal Management System (FTMS) in a commercial aircraft engine was built to model and simulate the fuel system. The study shows the thermal interactions between the fuel and engine lubrication oil through the mission profile of a high bypass ratio, two-spool turbofan engine. Fuel temperature was monitored as it flowed through each sub-component of the fuel system during the mission. The heat load in the fuel system strongly depended on the fuel flow rate, and was significantly increased for the periods of cruise and descent with decrease of fuel flow rate, rather than for the periods of take-off. Due to the thermal interaction in the pump housing, the fuel temperature at the outlet of the low-pressure pump was increased (4.0, 9.2, and 30.0) % over the case without thermal interaction for take-off, cruise, and descent, respectively.

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

Thermal Analysis for Design of Propulsion System Employed in LEO Earth Observation Satellite

  • Han C.Y.;Kim J.S.;Lee K.H.;Rhee S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.248-250
    • /
    • 2003
  • Thermal analysis is performed to protect the propulsion system of low-earth-orbit earth observation satellite from unwanted thermal disaster like propellant freezing. To implement thermal design adequately, heater powers for the propulsion system estimated through the thermal analysis are decided. Based on those values anticipated herein, the average power for propulsion system becomes 22.02 watts when the only one redundant catalyst bed heater is turned on. When for the preparation of thruster firing, 25.93 watts of the average power is required. All heaters selected for propulsion components operate to prevent propellant freezing meeting the thermal requirements for the propulsion system with the worst-case average voltage, i.e. 25 volts.

  • PDF

초전도 전력케이블의 열 등가 회로에 관한 연구 (A Study on the Equivalent Thermal Circuit for HTS Power Cable)

  • 이수길;이흥재
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.61-65
    • /
    • 2010
  • To develop the thermal analysis method for the thermal behavior of HTS power cable system, cooled with sub-cooled liquid nitrogen, new thermo dynamic model for HTS cable system is introduced. The introduced thermal model is mainly modified from the thermal circuit following to IEC60287 for underground power cable systems such as XLPE or paper wrapped insulation cables. The thermal circuits for HTS cables are similar to the forced cooled underground cable system but the major thermal parameters and the configuration is apparently different to the normal cable systems so there has been no proposals in this field of analysing method. In this paper, 154kV HTS cable system has been introduced as an aspects of thermal models and a thermal circuit is proposed for the fundamentals on the dynamic rating systems for the HTS cable system. By using the thermal circuit developed in this paper, the optimal controls on the sub-cooling system's capacity become possible and it is expected to make the efficiency of HTS cable higher than conventional static controls.

축열시스템의 종류 및 열에너지 공급시스템에서의 역할 (Classification and function of the Storage System in the Thermal Energy Supply System)

  • 이동원;조수;장철용
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.141-146
    • /
    • 2008
  • For the efficient use of thermal energy and its related equipments, optimal energy in view of quality and quantity should be timely provided. The core of thermal energy storage technology deals with an energy efficiency for effective energy storage and supply. The relative importance of thermal energy storage technology has been underestimated so far, and the specific projects on this filed have been performed intermittently. For the efficient and systematic approach of the energy supply system projects on thermal energy storage technology, we conduct the survey on the current status of this field. Firstly, classify into the thermal energy storage and describing the recent research for each system. The necessity and importance of thermal energy storage technology is identified through this study. It reveals that the thermal energy storage is the mandatory technology to solve the difference of supply and demand in thermal loads. It would greatly contribute to the combined heat and power(CHP) system. The urgent technologies for the commercial value and the core technologies for the CHP system are classified with this study.

  • PDF

TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구 (A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS)

  • 박상미;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

부산지역 해수온도차이용 냉난방기술 (Technology of Air-Conditioning System by Ocean Thermal Energy near Busan Coast)

  • 오철;김명환;임태우;최영도
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.350-355
    • /
    • 2009
  • Air-conditioning system by ocean thermal energy has been developed in the areas of Europe, North America and Japan because there are abundant amount of thermal energy potential in the ocean and permanent free use for the thermal energy using the air-conditioning system. In the case of domestic ocean thermal energy resource, ocean thermal energy potential exists about 27,155Tcal/year and totally 20,285Tcal/year of possible thermal energy use by heat pump, which are reported from the survey of the 7 domestic near shore cities. Present study is aimed to survey the current development status of domestic and overseas air-conditioning system by ocean thermal energy, especially, for the air-conditioning facility technologies using sea water.

  • PDF