• Title/Summary/Keyword: Thermal storage

Search Result 1,398, Processing Time 0.026 seconds

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes (지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.308-318
    • /
    • 2013
  • Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.

A study of the simulation of thermal distribution in an aquifer thermal energy storage utilization model (대수층 축열 에너지 활용 모델의 온도 분포 시뮬레이션 연구)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.697-700
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop an ATES system which has certain hydrogeological characteristics, understanding of the thermo hydraulic processes of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermo hydraulic transfer for heat storage is simulated using FEFLOW according to two sets of pumping and waste water reinjection scenarios of heat pump operation in a two layered confined aquifer. In the first set of model, the movement of the thermal front and groundwater level are simulated by changing the locations of injection and pumping well in seasonal cycle. However, in the second set of model the simulation is performed in the state of fixing the locations of pumping and injection well. After 365 days simulation period, the temperature distribution is dominated by injected water temperature and the distance from injection well. The small temperature change is appears on the surface compared to other slices of depth because the first layer has very low porosity and the transfer of thermal energy are sensitive at the porosity of each layer. The groundwater levels and temperature changes in injection and pumping wells are monitored to validate the effectiveness of the used heat pump operation method and the thermal interference between wells is analyzed.

  • PDF

Experiment on the Charge and Discharge of Thermal Energy for Under-Water Harvest-Type Ice Storage System (수중 하베스트형 빙축열시스템의 축방냉 특성 실험)

  • Kim, J.D.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • This paper is concerned with the development of a new method for making, separating ice and storage floated ice by installing an evaporation plate at under-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating an ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. Developed new harvest-type method shows good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, however these components are not necessary in a new method. In this study ice storage systems are experimentally investigated to study the charge and discharge of thermal energy. The results show the applicable possibility and performance enhancement of a new type.

Study on Stratification according to Diffuser Shape of the Thermal Storage Tank in Integrated Energy (집단에너지 공급 축열조의 디퓨져 형태별 성층화 연구)

  • Jang, Cheol-Yong;Cho, Soo;Choi, Seok-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.300-303
    • /
    • 2008
  • The stratification effect was investigated with four different types of diffuser shape in a thermal storage tank. For this study, experimental facility was constructed, which was composed of experimental thermal storage tank, hot and cold water storage tanks, boiler, chiller, data acquisition system, etc.. Visualization and lab scale experimental result showed that radial curved type diffuser was the highest degree of stratification among the four diffuser shapes.

  • PDF

An Analysis of the Optimal Control of Air-Conditioning System with Slab Thermal Storage by the Gradient Method Algorithm (구배법 알고리즘에 의한 슬래브축열의 최적제어 해석)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.534-540
    • /
    • 2008
  • In this paper, the optimal bang-bang control problem of an air-conditioning system with slab thermal storage was formulated by gradient method. Furthermore, the numeric solution obtained by gradient method algorithm was compared with the analytic solution obtained on the basis of maximum principle. The control variable is changed uncontinuously at the start time of thermal storage operation in an analytic solution. On the other hand, it is showed as a continuous solution in a numeric solution. The numeric solution reproduces the analytic solution when a tolerance for convergence is applied severely. It is conceivable that gradient method is effective in the analysis of the optimal bang-bang control of the large-scale system like an air-conditioning system with slab thermal storage.

A Study on Control Method of Thermal Storage Tank for Varying Thermal Load in Heat Pump Water Heater (열펌프 온수기의 부하 대응 축열조 제어에 관한 연구)

  • Nam, Hyun-Kyu;Bai, Cheol-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.330-335
    • /
    • 2012
  • A characteristic behavior of the thermal storage tank for varying thermal load in heat pump water heater was studied. The control method was suggested and applied. By measuring the temperature within the storage tank, the heat pump was ON/OFF controlled. The appropriate measuring position and the size of heat exchanger gives the minimized power consumption of heat pump. As the length of heat exchanger increases, the temperature measuring position goes down of the storage tank and the power consumption increases.

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas;Kestutis Rackaitis;Povilas Poskas;Hussam Jouhara
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2604-2612
    • /
    • 2023
  • Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

Design of an Aquifer Thermal Energy Storage System (I) : Isothermal Analysis (지하대수층을 이용한 축열시스템의 설계 (I) : 등온해석)

  • Song, Y.K.;Lee, K.S.;Lee, T.H.;Kim, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.102-110
    • /
    • 1993
  • An isothermal analysis was conducted to develop the design tool of an aquifer thermal energy storage system. Taejeon aquifer was chosen for the analysis, and the variation of FRE(Fluid Recovery Efficiency) with respect to the aquifer natural velocity and thermal load were investigated. The analysis results were compared with those of ATESSS(Aquifer Thermal Energy Storage System Simulator) and agreed within 2% of discrepancy. It is recommended, based on the result of this study, that the system may be suitable for a large volume of hot or chill thermal energy storage system, such as for district heating or cooling.

  • PDF

The Study on Efficiency Improvement of Thermal Storage Tank for Solar Combined Heating System (태양열 난방 일체형 복합시스템의 축열조 효율개선에 관한 연구)

  • Lyu, Nam-Jin;Ko, Kwang-Soo;Han, Yu-Ri;Park, Youn-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.188-192
    • /
    • 2006
  • This study is conducted to improve efficiency of thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from solar or the others heat sources. However, it has difficulties in storing heat with uniform temperature through the entire tank with respect to vertical direction. This kind of maldistribution of the supplied heat to the storage tank effects on the system performance. In this study is focused on utilization of the thermal stratification to improve thermal comfort for people in the house. To enhance temperature stratification of the tank, a distributor was designed and Installed in the middle of the tank. The distributor is supplies hottest water to the top side of the tank which is very close to inlet of the supply line to the heating load. The hottest water that is accumulated on top side of the tank is firstly supplied to the load with higher temperature. Reminder water takes a little time to warming up until desired supply temperature reached. This kind alternating selection of the supply temperature is improve thermal comfort with moderated system performance.

  • PDF